Suppr超能文献

利用近红外和衰减全反射傅里叶变换红外光谱数据融合检测中国蜂蜜的掺假。

Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion.

机构信息

Opto-electronic Department of Jinan University, Guangzhou 510632, China.

GuangDong Institute of Applied Biological Resources, Guangzhou 510636, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Jul 5;235:118297. doi: 10.1016/j.saa.2020.118297. Epub 2020 Mar 24.

Abstract

The aim of this study is to find a fast, accurate, and effective method for the detection of adulteration in honey circulating in the market. Near-infrared spectroscopy and mid-infrared spectroscopy data on natural honey and syrup-adulterated honey were integrated in the experiment. A method for identifying natural honey and syrup-adulterated honey was established by incorporating these data into a Support Vector Machine (SVM). In this experiment, 112 natural pure honey samples of 20 common honey types from 10 provinces in China were collected, and 112 adulterated honey samples with different percentages of syrup (10, 20, 30, 40, 50, and 60%) were prepared using six types of syrup commonly used in industry. The total number of samples was 224. The near- and mid-infrared spectral data were obtained for all samples. The raw spectra were pre-processed by First Derivative (FD) transform, Second Derivative (SD) transform, Multiple Scattering Correction (MSC), and Standard Normal Variate Transformation (SNVT). The above-corrected data underwent low-level and intermediate-level data fusion. In the last step, Grid Search (GS), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) were employed as the optimization algorithms to find the optimal penalty parameter c and the optimal kernel parameter g for the SVM, and to establish the best SVM-based detection model for natural honey and syrup-adulterated honey. The results reveal that, compared to low-level data fusion, intermediate-level data fusion significantly improves the detection model. With the latter, the accuracy, sensitivity and specificity of the optimal SVM model all reach 100%, which makes it ideal for the identification of natural honey and syrup-adulterated honey.

摘要

本研究旨在寻找一种快速、准确、有效的检测方法,以检测市场上流通的蜂蜜掺假情况。本实验将天然蜂蜜和糖浆掺假蜂蜜的近红外光谱和中红外光谱数据进行了整合。通过将这些数据纳入支持向量机(SVM),建立了一种鉴别天然蜂蜜和糖浆掺假蜂蜜的方法。在本实验中,采集了来自中国 10 个省份的 20 种常见蜂蜜类型的 112 个天然纯蜂蜜样本,并使用 6 种工业常用糖浆制备了不同糖浆含量(10%、20%、30%、40%、50%和 60%)的 112 个掺假蜂蜜样本。总样本数为 224 个。对所有样本进行了近红外和中红外光谱数据采集。原始光谱经过一阶导数(FD)变换、二阶导数(SD)变换、多次散射校正(MSC)和标准正态变量变换(SNVT)预处理。经过上述校正的数据进行了低水平和中水平数据融合。最后一步,采用网格搜索(GS)、遗传算法(GA)和粒子群优化(PSO)作为优化算法,为 SVM 寻找最优惩罚参数 c 和最优核参数 g,建立基于 SVM 的天然蜂蜜和糖浆掺假蜂蜜最佳检测模型。结果表明,与低水平数据融合相比,中水平数据融合显著提高了检测模型的性能。采用后者,最优 SVM 模型的准确性、灵敏度和特异性均达到 100%,是鉴别天然蜂蜜和糖浆掺假蜂蜜的理想方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验