Suppr超能文献

一种用于评估具有样本量重新计算的适应性成组序贯设计的新条件性能评分。

A new conditional performance score for the evaluation of adaptive group sequential designs with sample size recalculation.

作者信息

Herrmann Carolin, Pilz Maximilian, Kieser Meinhard, Rauch Geraldine

机构信息

Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.

Berlin Institute of Health (BIH), Berlin, Germany.

出版信息

Stat Med. 2020 Jul 10;39(15):2067-2100. doi: 10.1002/sim.8534. Epub 2020 Apr 6.

Abstract

In standard clinical trial designs, the required sample size is fixed in the planning stage based on initial parameter assumptions. It is intuitive that the correct choice of the sample size is of major importance for an ethical justification of the trial. The required parameter assumptions should be based on previously published results from the literature. In clinical practice, however, historical data often do not exist or show highly variable results. Adaptive group sequential designs allow a sample size recalculation after a planned unblinded interim analysis in order to adjust the sample size during the ongoing trial. So far, there exist no unique standards to assess the performance of sample size recalculation rules. Single performance criteria commonly reported are given by the power and the average sample size; the variability of the recalculated sample size and the conditional power distribution are usually ignored. Therefore, the need for an adequate performance score combining these relevant performance criteria is evident. To judge the performance of an adaptive design, there exist two possible perspectives, which might also be combined: Either the global performance of the design can be addressed, which averages over all possible interim results, or the conditional performance is addressed, which focuses on the remaining performance conditional on a specific interim result. In this work, we give a compact overview of sample size recalculation rules and performance measures. Moreover, we propose a new conditional performance score and apply it to various standard recalculation rules by means of Monte-Carlo simulations.

摘要

在标准临床试验设计中,所需样本量在规划阶段基于初始参数假设确定。直观地说,正确选择样本量对于试验的伦理合理性至关重要。所需的参数假设应基于先前发表的文献结果。然而,在临床实践中,历史数据往往不存在或显示出高度可变的结果。适应性成组序贯设计允许在计划的非盲期中分析后重新计算样本量,以便在正在进行的试验期间调整样本量。到目前为止,不存在评估样本量重新计算规则性能的独特标准。通常报告的单一性能标准由检验效能和平均样本量给出;重新计算的样本量的变异性和条件检验效能分布通常被忽略。因此,显然需要一个结合这些相关性能标准的适当性能得分。为了判断适应性设计的性能,存在两种可能的观点,也可以将它们结合起来:要么考虑设计的整体性能,即对所有可能的期中结果求平均值,要么考虑条件性能,即关注基于特定期中结果的剩余性能。在这项工作中,我们对样本量重新计算规则和性能度量进行了简要概述。此外,我们提出了一种新的条件性能得分,并通过蒙特卡罗模拟将其应用于各种标准重新计算规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验