Bagiya Mala S, Thomas Dhanya, Astafyeva Elvira, Bletery Quentin, Lognonné Philippe, Ramesh Durbha Sai
Indian Institute of Geomagnetism (DST), Navi Mumbai, India.
Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, Cedex, France.
Sci Rep. 2020 Mar 23;10(1):5232. doi: 10.1038/s41598-020-61749-x.
Using the specific satellite line of sight geometry and station location with respect to the source, Thomas et al. [Scientific Reports, https://doi.org/10.1038/s41598-018-30476-9] developed a method to infer the detection altitude of co-seismic ionospheric perturbations observed in Global Positioning System (GPS) - Total Electron Content (TEC) measurements during the Mw 7.4 March 9, 2011 Sanriku-Oki earthquake, a foreshock of the Mw 9.0, March 11, 2011 Tohoku-Oki earthquake. Therefore, in addition to the spatio-temporal evolution, the altitude information of the seismically induced ionospheric signatures can also be derived now using GPS-TEC technique. However, this method considered a point source, in terms of a small rupture area (~90 km) during the Tohoku foreshock, for the generation of seismo-acoustic waves in 3D space and time. In this article, we explore further efficacy of GPS-TEC technique during co-seismic ionospheric sounding for an extended seismic source varying simultaneously in space and time akin to the rupture of Mw 9.0 Tohoku-Oki mainshock and the limitations to be aware of in such context. With the successful execution of the method by Thomas et al. during the Tohoku-Oki mainshock, we not only estimate the detection altitude of GPS-TEC derived co-seismic ionospheric signatures but also delineate, for the first time, distinct ground seismic sources responsible for the generation of these perturbations, which evolved during the initial 60 seconds of the rupture. Simulated tsunami water excitation over the fault region, to envisage the evolution of crustal deformation in space and time along the rupture, formed the base for our model analysis. Further, the simulated water displacement assists our proposed novel approach to delineate the ground seismic sources entirely based on the ensuing ionospheric perturbations which were otherwise not well reproduced by the ground rupture process within this stipulated time. Despite providing the novel information on the segmentation of the Tohoku-Oki seismic source based on the co-seismic ionospheric response to the initial 60 seconds of the event, our model could not reproduce precise rupture kinematics over this period. This shortcoming is also credited to the specific GPS satellite-station viewing geometries.
利用特定的卫星视线几何形状以及台站相对于震源的位置,托马斯等人[《科学报告》,https://doi.org/10.1038/s41598 - 018 - 30476 - 9]开发了一种方法,用于推断在2011年3月9日三陆冲Mw 7.4地震(2011年3月11日东北冲Mw 9.0地震的前震)期间全球定位系统(GPS) - 总电子含量(TEC)测量中观测到的同震电离层扰动的探测高度。因此,除了时空演化之外,现在还可以使用GPS - TEC技术得出地震诱发电离层信号的高度信息。然而,该方法考虑的是一个点源,就东北前震期间一个小的破裂区域(约90千米)而言,用于在三维空间和时间中产生地震声波。在本文中,我们探讨了GPS - TEC技术在同震电离层探测期间对于一个在空间和时间上同时变化的扩展地震源(类似于Mw 9.0东北冲主震的破裂)的进一步有效性,以及在这种情况下需要注意的局限性。随着托马斯等人的方法在东北冲主震期间成功实施,我们不仅估计了GPS - TEC得出的同震电离层信号的探测高度,而且首次描绘了导致这些扰动产生的不同地面地震源,这些源在破裂的最初60秒内发生了演化。对断层区域模拟海啸水激发,以设想沿破裂的地壳变形在空间和时间上的演化,构成了我们模型分析的基础。此外,模拟的水位移辅助我们提出的新方法,该方法完全基于随后的电离层扰动来描绘地面地震源,否则在规定时间内地面破裂过程无法很好地再现这些扰动。尽管基于事件最初60秒的同震电离层响应提供了关于东北冲地震源分段的新信息,但我们的模型在此期间无法再现精确的破裂运动学。这个缺点也归因于特定的GPS卫星 - 台站观测几何形状。