Kalkan Bora, Okay Gokce, Aitken Bruce G, Clark Simon M, Sen Sabyasachi
Earth and Planetary Sciences Department, University of California, Santa Cruz, CA, 95064, USA.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Sci Rep. 2020 Mar 23;10(1):5208. doi: 10.1038/s41598-020-61997-x.
The atomic structure of a germanium doped phosphorous selenide glass of composition GePSe is determined as a function of pressure from ambient to 24 GPa using Monte-Carlo simulations constrained by high energy x-ray scattering data. The ambient pressure structure consists primarily of PSe molecules and planar edge shared phosphorus rings, reminiscent of those found in red phosphorous as well as a small fraction of locally clustered corner-sharing GeSe tetrahedra. This low-density amorphous phase transforms into a high-density amorphous phase at ~6.3 GPa. The high-pressure phase is characterized by an extended network structure. The polyamorphic transformation between these two phases involves opening of the P ring at the base of the PSe molecules and subsequent reaction with red phosphorus type moieties to produce a cross linked structure. The compression mechanism of the low-density phase involves increased molecular packing, whereas that of the high pressure phase involves an increase in the nearest-neighbor coordination number while the bond angle distributions broaden and shift to smaller angles. The entropy and volume changes associated with this polyamorphic transformation are positive and negative, respectively, and consequently the corresponding Clapeyron slope for this transition would be negative. This result has far reaching implications in our current understanding of the thermodynamics of polyamorphic transitions in glasses and glass-forming liquids.
利用受高能X射线散射数据约束的蒙特卡罗模拟,确定了组成为GePSe的锗掺杂磷硒玻璃的原子结构随压力从环境压力到24吉帕的变化情况。环境压力下的结构主要由PSe分子和平面边缘共享的磷环组成,这让人联想到在红磷中发现的结构,以及一小部分局部聚集的角共享GeSe四面体。这种低密度非晶相在约6.3吉帕时转变为高密度非晶相。高压相的特征是具有扩展的网络结构。这两个相之间的多形转变涉及PSe分子底部P环的打开,以及随后与红磷型部分的反应,以产生交联结构。低密度相的压缩机制涉及分子堆积的增加,而高压相的压缩机制涉及最近邻配位数的增加,同时键角分布变宽并向较小角度移动。与这种多形转变相关的熵变和体积变化分别为正和负,因此该转变的相应克拉珀龙斜率将为负。这一结果对我们目前对玻璃和玻璃形成液体中多形转变热力学的理解具有深远影响。