Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
J Dairy Sci. 2020 Jun;103(6):5170-5182. doi: 10.3168/jds.2019-17255. Epub 2020 Apr 3.
An SNP-BLUP model is computationally scalable even for large numbers of genotyped animals. When genetic variation cannot be completely captured by SNP markers, a more accurate model is obtained by fitting a residual polygenic effect (RPG) as well. However, inclusion of the RPG effect increases the size of the SNP-BLUP mixed model equations (MME) by the number of genotyped animals. Consequently, the calculation of model reliabilities requiring elements of the inverted MME coefficient matrix becomes more computationally challenging with increasing numbers of genotyped animals. We present a Monte Carlo (MC)-based sampling method to estimate the reliability of the SNP-BLUP model including the RPG effect, where the MME size depends on the number of markers and MC samples. We compared reliabilities calculated using different RPG proportions and different MC sample sizes in analyzing 2 data sets. Data set 1 (data set 2) contained 19,757 (222,619) genotyped animals, with 11,729 (50,240) SNP markers, and 231,186 (13.35 million) pedigree animals. Correlations between the correct and the MC-calculated reliabilities were above 98% even with 5,000 MC samples and an 80% RPG proportion in both data sets. However, more MC samples were needed to achieve a small maximum absolute difference and mean squared error, particularly when the RPG proportion exceeded 20%. The computing time for MC SNP-BLUP was shorter than for GBLUP. In conclusion, the MC-based approach can be an effective strategy for calculating SNP-BLUP model reliability with an RPG effect included.
SNP-BLUP 模型在计算上具有可扩展性,即使对于大量基因分型动物也是如此。当遗传变异不能完全被 SNP 标记捕捉到时,通过拟合剩余多基因效应 (RPG) 可以获得更准确的模型。然而,包含 RPG 效应会增加 SNP-BLUP 混合模型方程 (MME) 的大小,其大小与基因分型动物的数量成正比。因此,随着基因分型动物数量的增加,计算模型可靠性所需的逆 MME 系数矩阵元素的计算变得更加具有挑战性。我们提出了一种基于蒙特卡罗 (MC) 的抽样方法来估计包含 RPG 效应的 SNP-BLUP 模型的可靠性,其中 MME 的大小取决于标记的数量和 MC 样本。我们在分析两个数据集时比较了使用不同 RPG 比例和不同 MC 样本大小计算的可靠性。数据集 1(数据集 2)分别包含 19757(222619)个基因分型动物,有 11729(50240)个 SNP 标记和 231186(1335 万)个系谱动物。即使在两个数据集的 RPG 比例为 80%和 MC 样本为 5000 时,正确和 MC 计算可靠性之间的相关性也超过了 98%。然而,当 RPG 比例超过 20%时,需要更多的 MC 样本才能达到小的最大绝对差异和均方误差。MC SNP-BLUP 的计算时间比 GBLUP 短。总之,基于 MC 的方法可以是一种有效的策略,用于计算包含 RPG 效应的 SNP-BLUP 模型可靠性。