Suppr超能文献

食管腺癌的细胞类型特异性转录组学作为单细胞转录组学的可扩展替代方法。

Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics.

机构信息

Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.

Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.

出版信息

Mol Oncol. 2020 Jun;14(6):1170-1184. doi: 10.1002/1878-0261.12680. Epub 2020 Apr 21.

Abstract

Single-cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single-cell analysis remains resource-intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti-fibroblast) by fluorescence-activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene-level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis-related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single-cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.

摘要

单细胞转录组学极大地改变了我们对肿瘤细胞组成的认识,并使我们能够鉴定新的细胞亚型。尽管技术进步迅速,但单细胞分析仍然需要大量资源,限制了对足够数量的样本进行临床关联分析的可扩展性。因此,需要更具可扩展性的方法来了解单个细胞类型对食管腺癌等实体瘤的发展和治疗反应的贡献,而全面的基因组研究仅导致了少数靶向治疗。由于治疗选择有限和诊断较晚,食管腺癌预后较差。了解单个细胞群体之间的相互作用和功能障碍为开发新的干预措施提供了机会。为了满足技术和临床需求,我们开发了一种通过荧光激活细胞分选将食管癌组织分离为白细胞(CD45+)、上皮细胞(EpCAM+)和成纤维细胞(PDGFRα、CD90 两种中的一种、抗成纤维细胞)的方案,并进行 RNA 测序。我们通过将其转录组谱映射到参考细胞谱系表达数据来确认成功分离了这三个细胞群体。基因水平分析进一步支持了对白细胞中高表达 CD3、CD4、CD8、CD19 和 CD20、上皮细胞中 CDH1 和 MUC1 以及成纤维细胞中 FAP、SMA、COL1A1 和 COL3A1 的单个细胞群体的分离。作为概念验证,我们对 9 名患者的肿瘤样本进行了分析,并探索了三个细胞群体在肿瘤组织和正常组织之间的表达差异。有趣的是,我们发现与血管生成相关的基因在肿瘤中分离的成纤维细胞中上调。总体而言,我们建议该方案作为一种补充方法,与单细胞 RNA 测序相比,更具可扩展性,用于研究食管腺癌中特定细胞群体的临床参数与转录组改变之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d4/7266280/ac8e0db4b7dd/MOL2-14-1170-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验