Suppr超能文献

用于反渗透应用的芳香族聚酰胺膜中的纳米级化学异质性

Nanoscale Chemical Heterogeneity in Aromatic Polyamide Membranes for Reverse Osmosis Applications.

作者信息

McGilvery Catriona M, Abellan Patricia, Kłosowski Michał M, Livingston Andrew G, Cabral João T, Ramasse Quentin M, Porter Alexandra E

机构信息

Department of Materials and London Centre for Nanotechnology, Imperial College, London SW7 2AZ, United Kingdom.

SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19890-19902. doi: 10.1021/acsami.0c01473. Epub 2020 Apr 16.

Abstract

Reverse osmosis membranes are used within the oil and gas industry for seawater desalination on off-shore oilrigs. The membranes consist of three layers of material: a polyester backing layer, a polysulfone support and a polyamide (PA) thin film separating layer. It is generally thought that the PA layer controls ion selectivity within the membrane but little is understood about its structure or chemistry at the molecular scale. This active polyamide layer is synthesized by interfacial polymerization at an organic/aqueous interface between -phenylenediamine and trimesoyl chloride, producing a highly cross-linked PA polymer. It has been speculated that the distribution of functional chemistry within this layer could play a role in solute filtration. The only technique potentially capable of probing the distribution of functional chemistry within the active PA layer with sufficient spatial and energy resolution is scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS). Its use is a challenge because organic materials suffer beam-induced damage at relatively modest electron doses. Here we show that it is possible to use the N K-edge to map the active layer of a PA film using monochromated EELS spectrum imaging. The active PA layer is 12 nm thick, which supports previous neutron reflectivity data. Clear changes in the fine structure of the C K-edge across the PA films are measured and we use machine learning to assign fine structure at this edge. Using this method, we map highly heterogeneous intensity variations in functional chemistry attributed to N-C═C bonds within the PA. Similarities are found with previous molecular dynamics simulations of PA showing regions with a higher density of amide bonding as a result of the aggregation process at similar length scales. The chemical pathways that can be deduced may offer a clearer understanding of the transport mechanisms through the membrane.

摘要

反渗透膜用于石油和天然气行业的近海石油钻井平台上的海水淡化。这些膜由三层材料组成:聚酯背衬层、聚砜支撑层和聚酰胺(PA)薄膜分离层。一般认为PA层控制着膜内的离子选择性,但在分子尺度上对其结构或化学性质了解甚少。这种活性聚酰胺层是通过在对苯二胺和均苯三甲酰氯之间的有机/水界面进行界面聚合合成的,产生高度交联的PA聚合物。据推测,该层内功能化学的分布可能在溶质过滤中起作用。唯一有可能以足够的空间和能量分辨率探测活性PA层内功能化学分布的技术是扫描透射电子显微镜结合电子能量损失谱(STEM-EELS)。其应用具有挑战性,因为有机材料在相对较低的电子剂量下会受到束流诱导的损伤。在这里,我们表明可以使用N K边通过单色EELS光谱成像来绘制PA膜的活性层。活性PA层厚度为12nm,这与之前的中子反射率数据相符。测量了PA膜上C K边精细结构的明显变化,我们使用机器学习来确定该边的精细结构。使用这种方法,我们绘制了PA内归因于N-C═C键的功能化学中高度不均匀的强度变化。发现与之前PA的分子动力学模拟有相似之处,模拟显示由于在相似长度尺度上的聚集过程,酰胺键密度较高的区域。可以推断出的化学途径可能有助于更清楚地理解通过膜的传输机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验