包涵体肌炎基因表达谱的生物信息学分析。
Bioinformatics analysis of gene expression profiles of Inclusion body myositis.
机构信息
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
出版信息
Scand J Immunol. 2020 Jun;91(6):e12887. doi: 10.1111/sji.12887. Epub 2020 May 10.
Inclusion body myositis (IBM) is a disease with a poor prognosis and limited treatment options. This study aimed at exploring gene expression profile alterations, investigating the underlying mechanisms and identifying novel targets for IBM. We analysed two microarray datasets (GSE39454 and GSE128470) derived from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) between IBM and normal samples. Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery to identify the pathways and functional annotation of DEGs. Finally, protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape, in order to identify hub genes. A total of 144 upregulated DEGs and one downregulated DEG were identified. The GO enrichment analysis revealed that the immune response was the most significantly enriched term within the DEGs. The KEGG pathway analysis identified 22 significant pathways, the majority of which could be divided into the immune and infectious diseases. Following the construction of PPI networks, ten hub genes with high degrees of connectivity were picked out, namely PTPRC, IRF8, CCR5, VCAM1, HLA-DRA, TYROBP, C1QB, HLA-DRB1, CD74 and CXCL9. Our research hypothesizes that autoimmunity plays an irreplaceable role in the pathogenesis of IBM. The novel DEGs and pathways identified in this study may provide new insight into the underlying mechanisms of IBM at the molecular level.
包涵体肌炎(IBM)是一种预后不良且治疗选择有限的疾病。本研究旨在探索基因表达谱改变,研究潜在机制,并确定 IBM 的新靶点。我们分析了两个来自基因表达综合数据库(GEO)的微阵列数据集(GSE39454 和 GSE128470)。使用 GEO2R 工具筛选 IBM 和正常样本之间的差异表达基因(DEGs)。使用数据库注释、可视化和综合发现(Database for Annotation, Visualization and Integrated Discovery)进行基因本体论(GO)功能和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析,以确定 DEGs 的通路和功能注释。最后,使用 STRING 和 Cytoscape 构建蛋白质-蛋白质相互作用(PPI)网络,以识别枢纽基因。共鉴定出 144 个上调 DEG 和 1 个下调 DEG。GO 富集分析显示,免疫反应是 DEGs 中最显著富集的术语。KEGG 通路分析确定了 22 个显著通路,其中大多数可分为免疫和传染病。构建 PPI 网络后,挑选出 10 个具有高连接度的枢纽基因,即 PTPRC、IRF8、CCR5、VCAM1、HLA-DRA、TYROBP、C1QB、HLA-DRB1、CD74 和 CXCL9。我们的研究假设自身免疫在 IBM 的发病机制中起着不可替代的作用。本研究中鉴定的新 DEGs 和途径可能为 IBM 的分子水平的潜在机制提供新的见解。