Department of Anthropology, Wellesley College, Wellesley, MA, USA.
Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
J Anat. 2020 Aug;237(2):367-378. doi: 10.1111/joa.13198. Epub 2020 Apr 7.
Dentine- and enamel-forming cells secrete matrix in consistent rhythmic phases, resulting in the formation of successive microscopic growth lines inside tooth crowns and roots. Experimental studies of various mammals have proven that these lines are laid down in subdaily, daily (circadian), and multidaily rhythms, but it is less clear how these rhythms are initiated and maintained. In 2001, researchers reported that lesioning the so-called master biological clock, the suprachiasmatic nucleus (SCN), halted daily line formation in rat dentine, whereas subdaily lines persisted. More recently, a key clock gene (Bmal1) expressed in the SCN in a circadian manner was also found to be active in dentine- and enamel- secretory cells. To probe these potential neurological and local mechanisms for the production of rhythmic lines in teeth, we reexamined the role of the SCN in growth line formation in Wistar rats and investigated the presence of daily lines in Bmal1 knockout mice (Bmal1 ). In contrast to the results of the 2001 study, we found that both daily and subdaily growth lines persisted in rat dentine after complete or partial SCN lesion in the majority of individuals. In mice, after transfer into constant darkness, daily rhythms continued to manifest as incremental lines in the dentine of each Bmal1 genotype (wild-type, Bmal , and Bmal1 ). These results affirm that the manifestation of biological rhythms in teeth is a robust phenomenon, imply a more autonomous role of local biological clocks in tooth growth than previously suggested, and underscore the need further to elucidate tissue-specific circadian biology and its role in incremental line formation. Investigations of this nature will strengthen an invaluable system for determining growth rates and calendar ages from mammalian hard tissues, as well as documenting the early lives of fossil hominins and other primates.
牙本质和釉质形成细胞以一致的节奏相位分泌基质,导致在牙冠和牙根内形成连续的微观生长线。对各种哺乳动物的实验研究证明,这些线以上亚日(每日)、日(昼夜节律)和多日节律的方式形成,但这些节律如何启动和维持尚不清楚。2001 年,研究人员报告称,损伤所谓的主生物钟——视交叉上核(SCN),会停止大鼠牙本质中日线的形成,而亚日线仍持续存在。最近,人们还发现,在 SCN 中以昼夜节律方式表达的关键生物钟基因(Bmal1)也活跃于牙本质和釉质分泌细胞中。为了探究牙齿中产生节律线的这些潜在的神经和局部机制,我们重新研究了 SCN 在 Wistar 大鼠生长线形成中的作用,并研究了 Bmal1 基因敲除小鼠(Bmal1 )中每日线的存在。与 2001 年的研究结果相反,我们发现,在大多数个体中,完全或部分 SCN 损伤后,大鼠牙本质中的每日和亚日生长线都持续存在。在小鼠中,进入持续黑暗后,每日节律继续以增量线的形式出现在每个 Bmal1 基因型(野生型、Bmal1 和 Bmal1 )的牙本质中。这些结果证实了牙齿中生物节律的表现是一种稳健的现象,暗示局部生物钟在牙齿生长中的作用比之前认为的更为自主,并强调需要进一步阐明组织特异性昼夜生物学及其在增量线形成中的作用。对这种性质的研究将加强一个宝贵的系统,用于从哺乳动物硬组织中确定生长速度和日历年龄,并记录化石人类和其他灵长类动物的早期生活。