School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom.
Biomacromolecules. 2020 Jun 8;21(6):2096-2103. doi: 10.1021/acs.biomac.0c00086. Epub 2020 May 8.
Because nitric oxide (NO) gas is an endogenously produced signaling molecule related to numerous physiological functions, manystudies have been conducted to develop NO delivery systems for potential biomedical applications. However, NO is a reactive radical gas molecule that has a very short life-time and readily transforms into nitrogen oxide species via reaction with oxygen species. Therefore, it is necessary to develop an NO delivery carrier that allows local release of the NO gas at the site of application. In this study, Laponite (LP) nanoclay was used to fabricate an NO delivery carrier through the formation of Laponite-polyamine (LP-PA) composites. The Laponite clay and pentaethylenehexamine (PEHA) formed a macromolecular structure by electrostatic interaction and the nitric oxide donor, -diazeniumdiolate (NONOates), was synthesized into the LP-PA composite. We investigated the conformation of the LP-PA composite structure and the NO donor formation by ζ potential, X-ray diffraction, and UV-vis and Fourier transform infrared (FT-IR) spectroscopies and also by analyzing the NO release profile. Additionally, we confirmed the applicability in biomedical applications via a cell viability and in vitro endothelial cell tube formation assay.
由于一氧化氮(NO)气体是一种与许多生理功能相关的内源性信号分子,因此许多研究都致力于开发用于潜在生物医学应用的 NO 输送系统。然而,NO 是一种反应性自由基气体分子,具有非常短的寿命,并且容易通过与氧物种的反应转化为氮氧化物物种。因此,有必要开发一种 NO 输送载体,使其能够在应用部位局部释放 NO 气体。在这项研究中,使用 Laponite(LP)纳米粘土通过形成 Laponite-多胺(LP-PA)复合材料来制备 NO 输送载体。Laponite 粘土和五亚乙基六胺(PEHA)通过静电相互作用形成大分子结构,并且将一氧化氮供体,-二氮烯二酸盐(NONOates)合成到 LP-PA 复合材料中。我们通过 ζ 电位、X 射线衍射、紫外可见和傅里叶变换红外(FT-IR)光谱以及分析 NO 释放曲线来研究 LP-PA 复合材料结构和 NO 供体形成的构象。此外,我们通过细胞活力和体外内皮细胞管形成测定来确认其在生物医学应用中的适用性。