Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
Department of Paediatrics, The Canberra Hospital, Woden, ACT, Australia.
Adv Exp Med Biol. 2020;1221:607-630. doi: 10.1007/978-3-030-34521-1_24.
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-β-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.
1 型糖尿病(T1D)是由胰岛中产生胰岛素的β细胞自身免疫破坏引起的。内-β-D-糖苷酶肝素酶对糖胺聚糖硫酸乙酰肝素(HS)的降解在疾病过程的多个阶段中起着关键作用。肝素酶有助于:(i)炎症白细胞从血管迁移到胰岛;(ii)胰岛炎白细胞在胰岛内的浸润;(iii)β细胞的选择性破坏。这些疾病阶段的特征分别是 HS 在血管下基底膜(BM)中的溶解、BM 周围 HS 的破坏以及 HS 在β细胞内的降解。重要的是,健康的胰岛β细胞富含高度硫酸化的 HS,这对其活力、免受活性氧(ROS)的损伤、β细胞功能和分化至关重要。因此,与产生胰高血糖素的α细胞(其含有较少硫酸化的 HS)相比,小鼠和人类的β细胞对肝素酶介导的损伤极其敏感。在体外,用高度硫酸化的 HS 模拟物或类似物替代 HS 可以防止 HS 耗尽的小鼠和人β细胞的死亡。NOD 小鼠的 T1D 进展和新诊断的 T1D 患者与循环髓样白细胞中肝素酶的表达增加以及表达肝素酶的胰岛炎白细胞有关。用肝素酶抑制剂和 HS 替代物 PI-88 治疗 NOD 小鼠可使 T1D 发生率降低 50%,损害胰岛炎的发展并保留β细胞 HS。这些结果将肝素酶确定为 T1D 的一种新的破坏性工具,与自身反应性 T 细胞的传统细胞毒性和凋亡诱导机制不同。与外源性催化活性的肝素酶相反,内源性肝素酶可能在正常β细胞中的 HS 稳态、基因表达和胰岛素分泌以及白细胞中的免疫基因表达中发挥作用。在已建立的糖尿病中,高血糖、局部炎症细胞(如巨噬细胞)和肝素酶之间的相互作用导致继发性微血管和大血管疾病。我们已经确定双重活性的肝素酶抑制剂/HS 替代物是预防 T1D 进展和潜在治疗长期 T1D 发展过程中继发性血管疾病的一类新的治疗方法。