Suppr超能文献

特刊:表面等离激元学与超材料的新视野

Special Issue: New Horizon of Plasmonics and Metamaterials.

作者信息

Ogawa Shinpei, Kimata Masafumi

机构信息

Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661, Japan.

College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.

出版信息

Materials (Basel). 2020 Apr 9;13(7):1756. doi: 10.3390/ma13071756.

Abstract

Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and so significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics in order to explore the new horizons emerging for such research.

摘要

等离子体光子学和超材料是不断发展的领域,持续产生用于控制电磁波的新技术。从光谱的紫外区域到微波区域,在基础知识和实际应用方面都取得了许多重要进展,涉及广泛的材料、结构和波长。除了在许多不同领域取得的显著进展外,这项研究的许多内容都有许多相同的基本原理,因此有望产生显著的协同效应。本期特刊介绍了等离子体光子学和超材料的最新进展,并讨论了各种应用,同时涉及广泛的主题,以探索此类研究出现的新视野。

相似文献

1
Special Issue: New Horizon of Plasmonics and Metamaterials.
Materials (Basel). 2020 Apr 9;13(7):1756. doi: 10.3390/ma13071756.
2
Emergent Functionality and Controllability in Few-Layer Metasurfaces.
Adv Mater. 2015 Sep 23;27(36):5410-21. doi: 10.1002/adma.201501506. Epub 2015 Aug 12.
3
Plasmonic Metamaterials for Nanochemistry and Sensing.
Acc Chem Res. 2019 Nov 19;52(11):3018-3028. doi: 10.1021/acs.accounts.9b00325. Epub 2019 Nov 4.
4
Metamaterials and imaging.
Nano Converg. 2015;2(1):22. doi: 10.1186/s40580-015-0053-7. Epub 2015 Nov 9.
5
Metamaterial, plasmonic and nanophotonic devices.
Rep Prog Phys. 2017 Mar;80(3):036401. doi: 10.1088/1361-6633/aa518f. Epub 2017 Feb 6.
8
Mid-infrared, long-wave infrared, and terahertz photonics: introduction.
Opt Express. 2020 Apr 27;28(9):14169-14175. doi: 10.1364/OE.395165.
9
Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?
Philos Trans A Math Phys Eng Sci. 2017 Mar 28;375(2090). doi: 10.1098/rsta.2016.0068.
10
A review of metasurfaces: physics and applications.
Rep Prog Phys. 2016 Jul;79(7):076401. doi: 10.1088/0034-4885/79/7/076401. Epub 2016 Jun 16.

本文引用的文献

3
High-Efficiency and Wide-Angle Versatile Polarization Controller Based on Metagratings.
Materials (Basel). 2019 Feb 19;12(4):623. doi: 10.3390/ma12040623.
4
Soft and Stiff Simplex Tensegrity Lattices as Extreme Smart Metamaterials.
Materials (Basel). 2019 Jan 8;12(1):187. doi: 10.3390/ma12010187.
5
Transparent Metasurface for Generating Microwave Vortex Beams with Cross-Polarization Conversion.
Materials (Basel). 2018 Dec 3;11(12):2448. doi: 10.3390/ma11122448.
7
8
Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.
Materials (Basel). 2018 Jun 3;11(6):941. doi: 10.3390/ma11060941.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验