Stenberg S, Stenqvist B
Division of Theoretical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
J Phys Chem A. 2020 May 14;124(19):3943-3946. doi: 10.1021/acs.jpca.0c01684. Epub 2020 May 5.
We present the widespread Ewald summation method in a new light by utilizing a truncated Gaussian screening charge distribution. This choice entails an exact formalism, also as particle mesh Ewald, which in practice is not always the case when using a Gaussian screening function. The presented approach reduces the number of dependent parameters compared to a Gaussian and, for an infinite reciprocal space cutoff, makes the screening charge distribution width truly arbitrary. As such, this arbitrary variable becomes an ideal tool for computational optimization while maintaining accuracy, which is in contrast to when a Gaussian is used.
我们通过利用截断高斯屏蔽电荷分布,以一种全新的视角呈现了广泛应用的埃瓦尔德求和方法。这种选择带来了一种精确的形式体系,类似于粒子网格埃瓦尔德方法,而在实际使用高斯屏蔽函数时情况并非总是如此。与高斯方法相比,所提出的方法减少了相关参数的数量,并且对于无限的倒易空间截断,使屏蔽电荷分布宽度真正具有任意性。因此,这个任意变量成为计算优化的理想工具,同时保持了准确性,这与使用高斯方法时的情况形成了对比。