Williams G J, Link A, Sherlock M, Alessi D A, Bowers M, Conder A, Di Nicola P, Fiksel G, Fiuza F, Hamamoto M, Hermann M R, Herriot S, Homoelle D, Hsing W, d'Humières E, Kalantar D, Kemp A, Kerr S, Kim J, LaFortune K N, Lawson J, Lowe-Webb R, Ma T, Mariscal D A, Martinez D, Manuel M J-E, Nakai M, Pelz L, Prantil M, Remington B, Sigurdsson R, Widmayer C, Williams W, Willingale L, Zacharias R, Youngblood K, Chen Hui
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
Phys Rev E. 2020 Mar;101(3-1):031201. doi: 10.1103/PhysRevE.101.031201.
Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}. Two-dimensional particle-in-cell simulations suggest that electrons gain superponderomotive energies by stochastic acceleration as they sample a large area of rapidly changing laser phase. We demonstrate that such high temperatures are possible from subrelativistic intensities by using lasers with long pulse durations and large spatial scales.
通过千焦级亚相对论激光与等离子体相互作用测量了相对论电子温度。实验表明,其温度比由有质动力标度预期的温度高一个数量级,在强度为1×10¹⁸W/cm²的情况下产生了高达2.2兆电子伏特的温度。二维粒子模拟表明,电子在采样大面积快速变化的激光相位时,通过随机加速获得超有质动力能量。我们证明,通过使用具有长脉冲持续时间和大空间尺度的激光,在亚相对论强度下也可能产生如此高的温度。