Department of Bioengineering, University of Illinois at ChicagoChicago, ILUSA.
Department of Biomedical Engineering, University of MinnesotaMinneapolis, MNUSA.
Gene Expr. 2020 Jun 12;20(1):1-18. doi: 10.3727/105221620X15868728381608. Epub 2020 Apr 14.
Human liver models that are three-dimensional (3D) in architecture are indispensable for compound metabolism/toxicity screening, to model liver diseases for drug discovery, and for cell-based therapies; however, further development of such models is needed to maintain high levels of primary human hepatocyte (PHH) functions for weeks to months. Therefore, here we determined how microscale 3D collagen I presentation and fibroblast interaction affect the longevity of PHHs. High-throughput droplet microfluidics was utilized to generate reproducibly sized (∼300-μm diameter) microtissues containing PHHs encapsulated in collagen I ± supportive fibroblasts, namely, 3T3-J2 murine embryonic fibroblasts or primary human hepatic stellate cells (HSCs); self-assembled spheroids and bulk collagen gels (macrogels) containing PHHs served as controls. Hepatic functions and gene expression were subsequently measured for up to 6 weeks. We found that microtissues placed within multiwell plates rescued PHH functions at 2- to 30-fold higher levels than spheroids or macrogels. Further coating of PHH microtissues with 3T3-J2s led to higher hepatic functions than when the two cell types were either coencapsulated together or when HSCs were used for the coating instead. Importantly, the 3T3-J2-coated PHH microtissues displayed 6+ weeks of relatively stable hepatic gene expression and function at levels similar to freshly thawed PHHs. Lastly, microtissues responded in a clinically relevant manner to drug-mediated cytochrome P450 induction or hepatotoxicity. In conclusion, fibroblast-coated collagen microtissues containing PHHs display high hepatic functions for 6+ weeks and are useful for assessing drug-mediated CYP induction and hepatotoxicity. Ultimately, microtissues may find utility for modeling liver diseases and as building blocks for cell-based therapies.
用于化合物代谢/毒性筛选、药物发现和基于细胞的治疗的三维 (3D) 架构的人类肝脏模型是必不可少的;然而,需要进一步开发这些模型,以维持高水平的原代人肝细胞 (PHH) 功能数周至数月。因此,我们在这里确定了微尺度 3D 胶原 I 呈现和成纤维细胞相互作用如何影响 PHH 的寿命。高通量液滴微流控技术用于生成可重现大小(约 300-μm 直径)的微组织,其中包含包埋在胶原 I 中的 PHH ± 支持性成纤维细胞,即 3T3-J2 鼠胚胎成纤维细胞或原代人肝星状细胞 (HSCs);自组装的球体和含有 PHH 的大块胶原凝胶(宏观凝胶)作为对照。随后测量了长达 6 周的肝功能和基因表达。我们发现,与球体或宏观凝胶相比,置于多孔板中的微组织可挽救 PHH 功能,其水平高 2 至 30 倍。进一步用 3T3-J2 涂层 PHH 微组织可提高肝功能,高于两种细胞类型共包封或使用 HSCs 进行涂层的情况。重要的是,3T3-J2 涂层的 PHH 微组织显示出相对稳定的肝基因表达和功能,持续 6 周以上,水平与新鲜解冻的 PHH 相似。最后,微组织以临床相关的方式对药物介导的细胞色素 P450 诱导或肝毒性作出反应。总之,含有 PHH 的成纤维细胞涂层胶原微组织显示出 6 周以上的高肝功能,可用于评估药物介导的 CYP 诱导和肝毒性。最终,微组织可能用于模拟肝脏疾病和作为基于细胞的治疗的构建块。