Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, Petrolina, PE 56302-970, Brazil; Sustainable Agriculture Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK.
Sustainable Agriculture Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK.
Sci Total Environ. 2020 Jul 10;725:138072. doi: 10.1016/j.scitotenv.2020.138072. Epub 2020 Apr 1.
Irrigated dryland agroecosystems could become more sustainable if crop and soil management enhanced soil organic carbon (SOC). We hypothesized that combining high inputs from cover crops with no-tillage will increase long-term SOC stocks. Caatinga shrublands had been cleared in 1972 for arable crops and palm plantations before implementing field experiments on Mango and Melon systems (established in 2009 and 2012, respectively). Each of the two experiments were managed with no-till (NT) or conventional till (CT), and three types of cover cropping, either a plant mixture of 75% (PM1) or 25% (PM2) legumes, or spontaneous vegetation (SV). The RothC model was used with a daily timestep to simulate the soil moisture dynamics and C turnover for this dry climate. Carbon inputs were between 2.62 and 5.82 Mg C ha year and increased the depleted SOC stocks by 0.08 to 0.56 Mg C ha year. Scenarios of continuous biomass inputs of ca. 5 Mg C ha year for 60 years are likely to increase SOC stocks in the mango NT beyond the original Caatinga SOC by between 19.2 and 20.5 Mg C ha. Under CT similar inputs would increase SOC stocks only marginally above depletion (2.75 to 2.47 Mg C ha). Under melon, annual carbon inputs are slightly greater (up to 5.5 Mg C ha year) and SOC stocks would increase on average by another 8% to 22.3 to 20.6 Mg C ha under NT and by 8 Mg C ha under CT. These long-term simulations show that combining NT with high quality cover crops (PM1, PM2) would exceed SOC stocks of the initial Caatinga within 20 and 25 years under irrigated melon and mango cultivation, respectively. These results present a solution to reverse prior loss of SOC by replacing CT dryland agriculture with irrigated NT plus high input cover crops agroecosystems.
如果作物和土壤管理能够增加土壤有机碳 (SOC),那么灌溉旱地农业系统可能会变得更加可持续。我们假设,将高投入的覆盖作物与免耕相结合,将增加长期 SOC 储量。1972 年,为了种植农作物和棕榈种植园,开垦了卡廷加灌丛地,并于 2009 年和 2012 年分别建立了芒果和甜瓜系统,开始进行田间试验。两个试验分别采用免耕(NT)或传统耕作(CT),以及三种覆盖作物,分别是 75%(PM1)或 25%(PM2)的豆科植物混合物,或自然植被(SV)。RothC 模型每天进行一次时间步长模拟,以模拟这种干旱气候下的土壤水分动态和 C 转化。碳输入量在 2.62 到 5.82 Mg C ha 之间,每年增加 0.08 到 0.56 Mg C ha 的 SOC 储量。连续 60 年每年约 5 Mg C ha 的生物量输入情景,可能会使芒果 NT 中的 SOC 储量增加到初始卡廷加 SOC 以上,增加 19.2 到 20.5 Mg C ha。在 CT 下,类似的输入只会使 SOC 储量略有增加(2.75 到 2.47 Mg C ha)。在甜瓜下,每年的碳输入量略高(高达 5.5 Mg C ha),在 NT 下,SOC 储量平均增加 8%到 22.3 到 20.6 Mg C ha,在 CT 下增加 8 Mg C ha。这些长期模拟表明,在灌溉甜瓜和芒果种植下,将 NT 与高质量的覆盖作物(PM1、PM2)相结合,分别可在 20 年和 25 年内超过初始卡廷加的 SOC 储量。这些结果为用灌溉 NT 加高投入覆盖作物农业系统替代 CT 旱地农业来扭转先前 SOC 损失提供了一种解决方案。