Suppr超能文献

纳米氧化铜/二氧化硅用于催化 S-亚硝基硫醇生成一氧化氮。

Nanosized copper(ii) oxide/silica for catalytic generation of nitric oxide from S-nitrosothiols.

机构信息

Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine.

出版信息

J Mater Chem B. 2020 May 21;8(19):4267-4277. doi: 10.1039/d0tb00137f. Epub 2020 Apr 17.

Abstract

Nitric oxide NO, mediates inflammatory and thrombotic processes and designing biomaterials capable of releasing NO in contact with biological tissues is considered to be a major factor aimed at improving their bio- and haemocompatibility and antibacterial properties. Their NO-releasing capacity however is limited by the amount of the NO-containing substance incorporated in the bulk or immobilised on the surface of a biomaterial. An alternative approach is based on the design of a material generating nitric oxide from endogenous NO bearing metabolites by their catalytic decomposition. It offers, at least in theory, an unlimited source of NO for as long as the material remains in contact with blood and the catalyst maintains its activity. In this paper we studied the catalytic properties of novel nanostructured CuO/SiO catalysts in generating NO by decomposition of S-nitrosoglutathione (GSNO) in vitro. CuO/SiO catalysts with different CuO loadings were synthesized by chemisorption of copper(ii) acetylacetonate on fumed nanosilica followed by calcination. CuO content was controlled by a number of chemisorption-calcination cycles. Fourier-transform infrared spectroscopy and thermogravimetric analysis confirmed the formation of CuO/SiO nanoparticles (NPs) with particle size of CuO phase in the range from 71 to 88 nm. Scanning electron microscopy images revealed a uniform distribution of NPs without their sintering or agglomeration. All the materials of the CuO/SiO NP series exhibited NO-generating activity from GSNO confirmed by the Griess assay and by measuring the concentration of nitrite and nitrate anions in model solutions such as phosphate buffered saline and bovine serum. This activity is dependent on the material specific surface area and CuO exposure on the surface rather than CuO bulk content. The rate of NO production increased at higher initial concentration of the NO-bearing substrate studied in the range between 0.01 mM and 1.0 mM RSNO, which covers its physiological level. CuO/SiO NPs can be used to design polymers with NO generating properties at blood-biomaterial interface which are expected to have improved biocompatibility thus enhancing their potential for medical applications such as surgical tubing, peripheral venous catheters, auxiliary blood circulation devices and drug-eluting balloons.

摘要

一氧化氮(NO)介导炎症和血栓形成过程,设计能够在与生物组织接触时释放 NO 的生物材料被认为是提高其生物相容性和血液相容性以及抗菌性能的主要因素。然而,它们的 NO 释放能力受到包含在大块材料中的含 NO 物质的量或固定在生物材料表面的量的限制。另一种方法是基于设计一种通过催化分解含有内源性 NO 的代谢物来产生 NO 的材料。从理论上讲,只要材料与血液接触并且催化剂保持其活性,它就为 NO 提供了无限的来源。在本文中,我们研究了新型纳米结构 CuO/SiO 催化剂在体外通过分解 S-亚硝基谷胱甘肽(GSNO)生成 NO 的催化特性。通过铜(ii)乙酰丙酮酸盐在纳米二氧化硅上的化学吸附,然后煅烧,合成了具有不同 CuO 负载量的 CuO/SiO 催化剂。通过化学吸附-煅烧循环的次数来控制 CuO 的含量。傅里叶变换红外光谱和热重分析证实了 CuO/SiO 纳米颗粒(NPs)的形成,CuO 相的粒径在 71 到 88nm 之间。扫描电子显微镜图像显示 NPs 分布均匀,没有烧结或团聚。CuO/SiO NP 系列的所有材料都表现出从 GSNO 产生 NO 的活性,这通过格里厄斯测定法和测量模型溶液(如磷酸盐缓冲盐水和牛血清)中亚硝酸盐和硝酸盐阴离子的浓度来证实。这种活性取决于材料的比表面积和表面上暴露的 CuO,而不是 CuO 的体含量。在研究范围内(0.01mM 至 1.0mM RSNO),当研究的含 NO 底物的初始浓度增加时,NO 的产生速率增加,这涵盖了其生理水平。CuO/SiO NPs 可用于设计在血液-生物材料界面具有产生 NO 特性的聚合物,预计这些聚合物具有更好的生物相容性,从而提高其在医疗应用中的潜力,如手术管、外周静脉导管、辅助血液循环装置和载药球囊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验