Tradigo G, Vacca R, Manini T, Bird V, Gerke T, Veltri P, Prosperi M
University of Calabria, ponte Bucci, Arcavacata di Rende 87036, Italy.
University of Florida, 2004 Mowry Rd., Gainesville FL 32610-0231, USA.
Procedia Comput Sci. 2017;110:453-458. doi: 10.1016/j.procs.2017.06.119. Epub 2017 Jul 12.
Disease comorbidity is a result of complex epigenetic interplay. A disease is rarely a consequence of an abnormality in a single gene; complex pathways to disease patterns emerge from gene-gene interactions and gene-environment interactions. Understanding these mechanisms of disease and comorbidity development, breaking down them into clusters and disentangling the epigenetic - actionable - components, is of utter importance from a public health perspective. With the increase in the average life expectancy, healthy aging becomes a primary objective, from both an individual (i.e. quality of life) and a societal (i.e. healthcare costs) standpoint. Many studies have analyzed disease networks based on common altered genes, on protein-protein interactions, or on shared disease comorbidites, i.e. phenotypic disease networks. In this work we aim at studying the relations between genotypic and phenotypic disease networks, using a large statewide cohort of individuals (100, 000+ from California, USA) with linked clinical and genotypic information, the Genetic Epidemiology Research on Adult Health and Aging (GERA). By comparing their phenotypic and genotypic networks, we try to disentangle the epigenetic component of disease comorbidity.
疾病共病是复杂的表观遗传相互作用的结果。一种疾病很少是单个基因异常的结果;疾病模式的复杂途径源于基因-基因相互作用和基因-环境相互作用。从公共卫生的角度来看,了解这些疾病和共病发展的机制,将它们分解为不同的类别,并厘清表观遗传的可操作成分,是至关重要的。随着平均预期寿命的增加,从个人(即生活质量)和社会(即医疗成本)的角度来看,健康老龄化都成为了首要目标。许多研究基于共同改变的基因、蛋白质-蛋白质相互作用或共享的疾病共病情况(即表型疾病网络)分析了疾病网络。在这项工作中,我们旨在利用一个来自美国加利福尼亚州的大型全州队列个体(超过100,000人),即成人健康与衰老遗传流行病学研究(GERA),该队列具有关联的临床和基因型信息,来研究基因型和表型疾病网络之间的关系。通过比较它们的表型和基因型网络,我们试图厘清疾病共病的表观遗传成分。