Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Radiology, Akita Hospital, Chiryu, Japan.
Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Appl Radiat Isot. 2020 Jun;160:109136. doi: 10.1016/j.apradiso.2020.109136. Epub 2020 Mar 18.
For the imaging using low energy pure beta-emitting radionuclides, autoradiography is used by slicing the subjects because the range of beta particles is short and thought to be impossible to detect beta particles from outside the subjects. Contrary to this scientific consensus, we recently found that the distributions of C-14 could be measured by detecting the bremsstrahlung X-rays emitted from the solution of C-14 and may also be applicable to lower energy pure beta-emitting radionuclide, H-3. Although the detection of bremsstrahlung X-rays emitted from H-3 and C-14 may be a possible method for in-vivo imaging of small animals, the absorption of the bremsstrahlung X-rays in the subjects are significant because the energy of bremsstrahlung X-rays is relatively low. In addition, the generations of bremsstrahlung X-rays are lower for low energy beta particles. They may make the in-vivo imaging of these beta radionuclides difficult. To clarify these points for the in-vivo imaging of bremsstrahlung X-rays emitted from H-3 and C-14, we used Monte Carlo simulation to calculate the numbers of counts and the energy spectra of the bremsstrahlung X-rays emitted from H-3 and C-14 in water. The simulation results showed that the fraction of detected bremsstrahlung X-rays by a 4 cm × 4 cm detector in all emitted beta particles was 3.5 × 10 at 0.1 mm from the source. Thus, with a 10 M Bq of H-3, we will detect ~35 cps at 0.1 mm from the source so in-vivo imaging at surface area will be possible. For C-14, the fraction of detected bremsstrahlung X-rays by the detector without and with collimator were 7.0 × 10 and 1.1 × 10 at 10 mm from the source, respectively. Thus, with a 10 M Bq of C-14, we will detect ~700 cps and ~11 cps at 10 mm from the source without and with collimator, respectively. The count rate without collimator is easy to form an image in a short time using a low energy X-ray detector. With collimator, in-vivo imaging of distribution of C-14 will be possible. We conclude that in-vivo imaging of small animals by detecting the bremsstrahlung X-rays emitted from H-3 and C-14 is possible and promising for a new molecular imaging technology.
对于使用低能量纯β发射放射性核素的成像,由于β粒子的射程很短,被认为不可能从主体外部检测到β粒子,因此使用放射自显影术对主体进行切片。与这一科学共识相反,我们最近发现,通过检测 C-14 溶液中发射的韧致辐射 X 射线,可以测量 C-14 的分布,并且这种方法可能也适用于更低能量的纯β发射放射性核素 H-3。虽然检测 H-3 和 C-14 发射的韧致辐射 X 射线可能是小动物体内成像的一种可行方法,但由于韧致辐射 X 射线的能量相对较低,因此在主体中吸收韧致辐射 X 射线的程度很大。此外,低能量β粒子产生的韧致辐射 X 射线的数量较低,这可能会使这些β放射性核素的体内成像变得困难。为了澄清 H-3 和 C-14 发射的韧致辐射 X 射线体内成像的这些问题,我们使用蒙特卡罗模拟计算了水中 H-3 和 C-14 发射的β粒子的韧致辐射 X 射线的计数和能谱。模拟结果表明,在离源 0.1 毫米处,4 cm×4 cm 探测器检测到的所有发射β粒子中韧致辐射 X 射线的比例为 3.5×10-1。因此,对于 10 MBq 的 H-3,我们将在离源 0.1 毫米处检测到约 35 cps,因此可以在表面区域进行体内成像。对于 C-14,无准直器和有准直器时探测器检测到的韧致辐射 X 射线的比例分别为 10 毫米处的 7.0×10-1 和 1.1×10-1。因此,对于 10 MBq 的 C-14,无准直器和有准直器时,我们将分别在离源 10 毫米处检测到约 700 cps 和 11 cps。无准直器的计数率很容易使用低能量 X 射线探测器在短时间内形成图像。使用准直器,可以进行 C-14 分布的体内成像。我们的结论是,通过检测 H-3 和 C-14 发射的韧致辐射 X 射线,对小动物进行体内成像的方法是可行的,并且有望成为一种新的分子成像技术。