The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, United States.
Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States.
Elife. 2020 Apr 30;9:e53360. doi: 10.7554/eLife.53360.
Meiotic crossovers result from homology-directed repair of DNA double-strand breaks (DSBs). Unlike yeast and plants, where DSBs are generated near gene promoters, in many vertebrates DSBs are enriched at hotspots determined by the DNA binding activity of the rapidly evolving zinc finger array of PRDM9 (PR domain zinc finger protein 9). PRDM9 subsequently catalyzes tri-methylation of lysine 4 and lysine 36 of Histone H3 in nearby nucleosomes. Here, we identify the dual histone methylation reader ZCWPW1, which is tightly co-expressed during spermatogenesis with , as an essential meiotic recombination factor required for efficient repair of PRDM9-dependent DSBs and for pairing of homologous chromosomes in male mice. In sum, our results indicate that the evolution of a dual histone methylation writer/reader (PRDM9/ZCWPW1) system in vertebrates remodeled genetic recombination hotspot selection from an ancestral static pattern near genes towards a flexible pattern controlled by the rapidly evolving DNA binding activity of PRDM9.
减数分裂交叉是由 DNA 双链断裂 (DSB) 的同源定向修复产生的。与酵母和植物不同,酵母和植物中的 DSB 是在基因启动子附近产生的,而在许多脊椎动物中,DSB 富集在由 PRDM9(PR 结构域锌指蛋白 9)快速进化的锌指阵列的 DNA 结合活性决定的热点处。PRDM9 随后催化附近核小体中组蛋白 H3 的赖氨酸 4 和赖氨酸 36 的三甲基化。在这里,我们鉴定了双组蛋白甲基化阅读器 ZCWPW1,它在精子发生过程中与紧密共表达,是一种必需的减数分裂重组因子,对于 PRDM9 依赖性 DSB 的有效修复以及雄性小鼠同源染色体的配对是必需的。总之,我们的结果表明,脊椎动物中双组蛋白甲基化写入器/读取器(PRDM9/ZCWPW1)系统的进化,将遗传重组热点选择从祖先的基因附近的静态模式重塑为受 PRDM9 快速进化的 DNA 结合活性控制的灵活模式。