Suppr超能文献

直接在体 MRI 鉴别脑于核团和通路。

Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways.

机构信息

From the Departments of Radiology (T.M.S., B.A.-A., M.B.)

From the Departments of Radiology (T.M.S., B.A.-A., M.B.).

出版信息

AJNR Am J Neuroradiol. 2020 May;41(5):777-784. doi: 10.3174/ajnr.A6542. Epub 2020 Apr 30.

Abstract

BACKGROUND AND PURPOSE

The brain stem is a complex configuration of small nuclei and pathways for motor, sensory, and autonomic control that are essential for life, yet internal brain stem anatomy is difficult to characterize in living subjects. We hypothesized that the 3D fast gray matter acquisition T1 inversion recovery sequence, which uses a short inversion time to suppress signal from white matter, could improve contrast resolution of brain stem pathways and nuclei with 3T MR imaging.

MATERIALS AND METHODS

After preliminary optimization for contrast resolution, the fast gray matter acquisition T1 inversion recovery sequence was performed in 10 healthy subjects (5 women; mean age, 28.8 ± 4.8 years) with the following parameters: TR/TE/TI = 3000/2.55/410 ms, flip angle = 4°, isotropic resolution = 0.8 mm, with 4 averages (acquired separately and averaged outside -space to reduce motion; total scan time = 58 minutes). One subject returned for an additional 5-average study that was combined with a previous session to create a highest quality atlas for anatomic assignments. A 1-mm isotropic resolution, 12-minute version, proved successful in a patient with a prior infarct.

RESULTS

The fast gray matter acquisition T1 inversion recovery sequence generated excellent contrast resolution of small brain stem pathways in all 3 planes for all 10 subjects. Several nuclei could be resolved directly by image contrast alone or indirectly located due to bordering visualized structures (eg, locus coeruleus and pedunculopontine nucleus).

CONCLUSIONS

The fast gray matter acquisition T1 inversion recovery sequence has the potential to provide imaging correlates to clinical conditions that affect the brain stem, improve neurosurgical navigation, validate diffusion tractography of the brain stem, and generate a 3D atlas for automatic parcellation of specific brain stem structures.

摘要

背景与目的

脑干是一个复杂的小核团和用于运动、感觉和自主控制的通路结构,对生命至关重要,但活体内部脑干解剖结构难以进行特征描述。我们假设,使用短反转时间抑制白质信号的 3D 快速灰质获取 T1 反转恢复序列可改善 3T MR 成像中脑干通路和核团的对比分辨率。

材料与方法

在初步优化对比度分辨率后,在 10 名健康受试者(5 名女性;平均年龄 28.8±4.8 岁)中进行快速灰质获取 T1 反转恢复序列检查,参数如下:TR/TE/TI=3000/2.55/410ms,翻转角=4°,各向同性分辨率=0.8mm,采集 4 次平均(分别采集并在空间外平均以减少运动;总扫描时间=58 分钟)。1 名受试者返回进行另外 5 次平均检查,与之前的检查相结合,为解剖分配创建最佳质量图谱。1mm 各向同性分辨率、12 分钟版本,在 1 例既往梗死患者中获得成功。

结果

快速灰质获取 T1 反转恢复序列在所有 10 名受试者的所有 3 个平面中均生成了出色的小脑干通路对比分辨率。几个核团可通过单独的图像对比度直接分辨,或通过相邻可见结构(例如蓝斑和脑桥被盖核)间接定位。

结论

快速灰质获取 T1 反转恢复序列具有提供影响脑干的临床情况的成像相关性、改善神经外科导航、验证脑干弥散张量成像以及生成特定脑干结构自动分割的 3D 图谱的潜力。

相似文献

1
Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways.
AJNR Am J Neuroradiol. 2020 May;41(5):777-784. doi: 10.3174/ajnr.A6542. Epub 2020 Apr 30.
2
Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.
Neuroimage. 2014 Jan 1;84:534-45. doi: 10.1016/j.neuroimage.2013.08.069. Epub 2013 Sep 7.
3
An efficient sequence for fetal brain imaging at 3T with enhanced T contrast and motion robustness.
Magn Reson Med. 2018 Jul;80(1):137-146. doi: 10.1002/mrm.27012. Epub 2017 Nov 28.
4
In Vivo visualization of white matter fiber tracts in the brainstem using low flip angle double echo 3D gradient echo imaging at 3T.
Neuroimage. 2024 Oct 15;300:120857. doi: 10.1016/j.neuroimage.2024.120857. Epub 2024 Sep 19.
5
3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 1: Brain Stem.
AJNR Am J Neuroradiol. 2019 Mar;40(3):401-407. doi: 10.3174/ajnr.A5956. Epub 2019 Jan 31.
6
Can 7T MPRAGE match MP2RAGE for gray-white matter contrast?
Neuroimage. 2021 Oct 15;240:118384. doi: 10.1016/j.neuroimage.2021.118384. Epub 2021 Jul 13.
7
Imaging gray matter with concomitant null point imaging from the phase sensitive inversion recovery sequence.
Magn Reson Med. 2016 Nov;76(5):1512-1516. doi: 10.1002/mrm.26061. Epub 2015 Nov 24.
8
Optimization of fast gray matter acquisition T1 inversion recovery (FGATIR) on 7T MRI for deep brain stimulation targeting.
Neuroimage. 2022 May 15;252:119043. doi: 10.1016/j.neuroimage.2022.119043. Epub 2022 Feb 27.

引用本文的文献

1
Redefining the phenotype of alpha-methylacyl-CoA racemase (AMACR) deficiency.
Orphanet J Rare Dis. 2024 Sep 23;19(1):350. doi: 10.1186/s13023-024-03358-9.
2
Visualization of small brain nuclei with a high-spatial resolution, clinically available whole-body PET scanner.
Ann Nucl Med. 2024 Feb;38(2):154-161. doi: 10.1007/s12149-023-01886-1. Epub 2023 Nov 21.
3
Brainstem anatomy with 7-T MRI: in vivo assessment and ex vivo comparison.
Eur Radiol Exp. 2023 Nov 16;7(1):71. doi: 10.1186/s41747-023-00389-y.
4
Automatic planning of MR-guided transcranial focused ultrasound treatment for essential tremor.
Front Neuroimaging. 2023 Oct 26;2:1272061. doi: 10.3389/fnimg.2023.1272061. eCollection 2023.
5
The brainstem in multiple sclerosis: MR identification of tracts and nuclei damage.
Insights Imaging. 2021 Oct 21;12(1):151. doi: 10.1186/s13244-021-01101-7.
6
Longitudinal Assessment of Neuroradiologic Features in Wolfram Syndrome.
AJNR Am J Neuroradiol. 2020 Dec;41(12):2364-2369. doi: 10.3174/ajnr.A6831. Epub 2020 Oct 29.

本文引用的文献

1
3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 1: Brain Stem.
AJNR Am J Neuroradiol. 2019 Mar;40(3):401-407. doi: 10.3174/ajnr.A5956. Epub 2019 Jan 31.
2
Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI.
Mov Disord. 2018 Nov;33(11):1792-1799. doi: 10.1002/mds.27502. Epub 2018 Nov 13.
3
The challenge of mapping the human connectome based on diffusion tractography.
Nat Commun. 2017 Nov 7;8(1):1349. doi: 10.1038/s41467-017-01285-x.
4
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.
J Digit Imaging. 2017 Aug;30(4):449-459. doi: 10.1007/s10278-017-9983-4.
5
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
6
Quantitative T1, T2, and T2* Mapping and Semi-Quantitative Neuromelanin-Sensitive Magnetic Resonance Imaging of the Human Midbrain.
PLoS One. 2016 Oct 21;11(10):e0165160. doi: 10.1371/journal.pone.0165160. eCollection 2016.
7
Progression of alpha-synuclein pathology in multiple system atrophy of the cerebellar type.
Neuropathol Appl Neurobiol. 2017 Jun;43(4):315-329. doi: 10.1111/nan.12362. Epub 2016 Oct 18.
9
New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy.
AJNR Am J Neuroradiol. 2016 Jun;37(6):1058-65. doi: 10.3174/ajnr.A4685. Epub 2016 Feb 11.
10
Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.
Hum Brain Mapp. 2015 Aug;36(8):3167-78. doi: 10.1002/hbm.22836. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验