Suppr超能文献

利用拉曼光谱和化学计量学预测牛肉的 Warner-Bratzler 剪切力、肌内脂肪、滴水损失和蒸煮损失。

Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics.

机构信息

Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.

Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Meat Sci. 2020 Sep;167:108157. doi: 10.1016/j.meatsci.2020.108157. Epub 2020 Apr 24.

Abstract

Rapid prediction of beef quality remains a challenge for meat processors. This study evaluated the potential of Raman spectroscopy followed by chemometrics for prediction of Warner-Bratzler shear force (WBSF), intramuscular fat (IMF), ultimate pH, drip-loss and cook-loss. PLS regression models were developed based on spectra recorded on frozen-thawed day 2 longissimus thoracis et lumborum muscle and validated using test sets randomly selected 3 times. With the exception of ultimate pH, models presented notable performance in calibration (R ranging from 0.5 to 0.9; low RMSEC) and, despite variability in the results, promising predictive ability: WBSF (RMSEP ranging from 4.6 to 9 N), IMF (RMSEP ranging from 0.9 to 1.1%), drip-loss (RMSEP ranging from 1 to 1.3%) and cook-loss (RMSEP ranging from 1.5 to 2.9%). Furthermore, the loading values indicated that the physicochemical variation of the meat influenced the models. Overall, results indicated that Raman spectroscopy is a promising technique for routine quality assessments of IMF and drip-loss, which, with further development and improvement of its accuracy could become a reliable tool for the beef industry.

摘要

快速预测牛肉品质仍然是肉类加工商面临的挑战。本研究评估了拉曼光谱结合化学计量学预测 Warner-Bratzler 剪切力(WBSF)、肌内脂肪(IMF)、最终 pH 值、滴水损失和蒸煮损失的潜力。基于冷冻解冻后第 2 天的背最长肌和腰大肌记录的光谱,建立了 PLS 回归模型,并使用随机选择的 3 次测试集进行了验证。除了最终 pH 值外,模型在校准中表现出了显著的性能(R 范围从 0.5 到 0.9;低 RMSEC),尽管结果存在变异性,但具有有希望的预测能力:WBSF(RMSEP 范围从 4.6 到 9 N)、IMF(RMSEP 范围从 0.9 到 1.1%)、滴水损失(RMSEP 范围从 1 到 1.3%)和蒸煮损失(RMSEP 范围从 1.5 到 2.9%)。此外,载荷值表明肉的物理化学变化影响了模型。总体而言,结果表明拉曼光谱是一种很有前途的技术,可以用于 IMF 和滴水损失的常规质量评估,如果进一步开发和提高其准确性,它可能成为牛肉行业的可靠工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验