Takhsha Ghahfarokhi Milad, Nasi Lucia, Casoli Francesca, Fabbrici Simone, Trevisi Giovanna, Cabassi Riccardo, Albertini Franca
Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy.
Materials (Basel). 2020 May 1;13(9):2103. doi: 10.3390/ma13092103.
Magnetic shape memory Heuslers have a great potential for their exploitation in next-generation cooling devices and actuating systems, due to their "giant" caloric and thermo/magnetomechanical effects arising from the combination of magnetic order and a martensitic transition. Thermal hysteresis, broad transition range, and twinning stress are among the major obstacles preventing the full exploitation of these materials in applications. Using Ni-Mn-Ga seven-modulated epitaxial thin films as a model system, we investigated the possible links between the phase transition and the details of the twin variants configuration in the martensitic phase. We explored the crystallographic relations between the martensitic variants from the atomic-scale to the micro-scale through high-resolution techniques and combined this information with the direct observation of the evolution of martensitic twin variants vs. temperature. Based on our multiscale investigation, we propose a route for the martensitic phase transition, in which the interfaces between different colonies of twins play the major role of initiators for both the forward and reverse phase transition. Linking the martensitic transition to the martensitic configuration sheds light onto the possible mechanisms influencing the transition and paves the way towards microstructure engineering for the full exploitation of shape memory Heuslers in different applications.
由于磁有序和马氏体转变相结合产生的“巨大”热效应和热/磁机械效应,磁性形状记忆赫斯勒合金在下一代冷却设备和驱动系统中具有巨大的应用潜力。热滞、宽转变范围和孪生应力是阻碍这些材料在应用中充分发挥作用的主要障碍。我们以Ni-Mn-Ga七调制外延薄膜为模型系统,研究了马氏体相中相变与孪晶变体构型细节之间的可能联系。我们通过高分辨率技术探索了从原子尺度到微观尺度上马氏体变体之间的晶体学关系,并将这些信息与马氏体孪晶变体随温度演变的直接观察结果相结合。基于我们的多尺度研究,我们提出了一种马氏体相变途径,其中不同孪晶群体之间的界面在正向和反向相变中都起着主要的引发作用。将马氏体转变与马氏体构型联系起来,有助于揭示影响转变的可能机制,并为在不同应用中充分利用形状记忆赫斯勒合金的微观结构工程铺平道路。