Suppr超能文献

基于深度学习网络的复杂背景下硅藻图像识别与定位

[Deep learning network-based recognition and localization of diatom images against complex background].

作者信息

Deng Jiehang, He Dongdong, Zhuo Jiahong, Zhao Jian, Xiao Cheng, Kang Xiaodong, Hu Sunlin, Gu Guosheng, Liu Chao

机构信息

School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China.

School of Computer Science and Software, Zhaoqing University, Zhaoqing 526061 China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2020 Feb 29;40(2):183-189. doi: 10.12122/j.issn.1673-4254.2020.02.08.

Abstract

We propose a deep learning network-based method for recognizing and locating diatom targets with interference by complex background in autopsy.The system consisted of two modules: the preliminary positioning module and the accurate positioning module. In preliminary positioning, ZFNet convolution and pooling were utilized to extract the high-level features, and Regional Proposal Network (RPN) was applied to generate the regions where the diatoms may exist. In accurate positioning, Fast R-CNN was used to modify the position information and identify the types of the diatoms.We compared the proposed method with conventional machine learning methods using a self-built database of images with interference by simple, moderate and complex backgrounds. The conventional methods showed a recognition rate of diatoms against partial background interference of about 60%, and failed to recognize or locate the diatom objects in the datasets with complex background interference. The deep learning network-based method effectively recognized and located the diatom targets against complex background interference with an average recognition rate reaching 85%.The proposed method can be applied for recognition and location of diatom targets against complex background interference in autopsy.

摘要

我们提出了一种基于深度学习网络的方法,用于在尸检中识别和定位受复杂背景干扰的硅藻目标。该系统由两个模块组成:初步定位模块和精确定位模块。在初步定位中,利用ZFNet卷积和池化来提取高级特征,并应用区域提议网络(RPN)生成硅藻可能存在的区域。在精确定位中,使用快速R-CNN来修改位置信息并识别硅藻的类型。我们使用自建的具有简单、中等和复杂背景干扰的图像数据库,将所提出的方法与传统机器学习方法进行了比较。传统方法对部分背景干扰的硅藻识别率约为60%,在具有复杂背景干扰的数据集中无法识别或定位硅藻目标。基于深度学习网络的方法有效地识别和定位了受复杂背景干扰的硅藻目标,平均识别率达到85%。所提出的方法可应用于尸检中受复杂背景干扰的硅藻目标的识别和定位。

相似文献

1
[Deep learning network-based recognition and localization of diatom images against complex background].
Nan Fang Yi Ke Da Xue Xue Bao. 2020 Feb 29;40(2):183-189. doi: 10.12122/j.issn.1673-4254.2020.02.08.
3
Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test.
Fa Yi Xue Za Zhi. 2022 Feb 25;38(1):31-39. doi: 10.12116/j.issn.1004-5619.2021.411001.
4
Microscopic image recognition of diatoms based on deep learning.
J Phycol. 2023 Dec;59(6):1166-1178. doi: 10.1111/jpy.13390. Epub 2023 Nov 23.
5
Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm.
Forensic Sci Int. 2019 Sep;302:109922. doi: 10.1016/j.forsciint.2019.109922. Epub 2019 Aug 8.
6
Object recognition in medical images via anatomy-guided deep learning.
Med Image Anal. 2022 Oct;81:102527. doi: 10.1016/j.media.2022.102527. Epub 2022 Jun 25.
7
White blood cells detection and classification based on regional convolutional neural networks.
Med Hypotheses. 2020 Feb;135:109472. doi: 10.1016/j.mehy.2019.109472. Epub 2019 Nov 4.
8
DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application.
Comput Methods Programs Biomed. 2023 Apr;232:107434. doi: 10.1016/j.cmpb.2023.107434. Epub 2023 Feb 21.
10
Automated diatom searching in the digital scanning electron microscopy images of drowning cases using the deep neural networks.
Int J Legal Med. 2021 Mar;135(2):497-508. doi: 10.1007/s00414-020-02392-z. Epub 2020 Aug 13.

引用本文的文献

1
[A lightweight multiscale target object detection network for melanoma based on attention mechanism manipulation].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Nov 20;42(11):1662-1671. doi: 10.12122/j.issn.1673-4254.2022.11.10.

本文引用的文献

1
[Progress on Diatom Test in Drowning Cases].
Fa Yi Xue Za Zhi. 2015 Dec;31(6):462-5.
2
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1904-16. doi: 10.1109/TPAMI.2015.2389824.
3
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验