Suppr超能文献

[人工智能助力工业4.0时代的检验医学]

[Artificial intelligence empowers laboratory medicine in Industry 4.0].

作者信息

Zhou Quan, Qi Suwen, Xiao Bin, Li Qiaoliang, Sun Zhaohui, Li Linhai

机构信息

Department of Medical Laboratory, General Hospital of Southern Theater of PLA, Guangzhou 51010, China.

Department of In vitro Diagnostics, School of Biomedical Engineering, Shenzhen University, Shenzhen 518037, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2020 Feb 29;40(2):287-296. doi: 10.12122/j.issn.1673-4254.2020.02.23.

Abstract

Since 2017, China, the United States, and the European Union have successively issued national-level artificial intelligence (AI) strategic development plans, and the human history is about to witness the 4th industrial revolution with the theme of "intelligence". In the field of medical testing, the explosive growth of AI theories and technologies also provide a new direction for the development of medical testing theory, methods and applications. We review the evolution of AI and the recent progress in three major elements of AI, namely algorithms, data and computing power, and elaborate on the combined innovation of "AI + testing" in light of the key application dimensions of medical testing. The major applications include specimen collection robots, sample dilution robots and sample transfer robots involved in the processing of test specimens; test item mining such as tumor markers and pharmacogenomics; cytomorphology, laboratory medicine data processing, auxiliary diagnostic models, and internet-based medical tests. With the advent of the era of Industry 4.0, AI technology will promote the development of medical testing from automation to a highly intelligent stage.

摘要

自2017年以来,中国、美国和欧盟相继发布了国家级人工智能(AI)战略发展规划,人类历史即将见证以“智能”为主题的第四次工业革命。在医学检验领域,AI理论和技术的爆发式增长也为医学检验理论、方法及应用的发展提供了新方向。我们回顾了AI的发展历程以及AI三个主要要素(即算法、数据和算力)的最新进展,并结合医学检验的关键应用维度阐述了“AI+检验”的融合创新。主要应用包括参与检验标本处理的标本采集机器人、样本稀释机器人和样本转移机器人;肿瘤标志物和药物基因组学等检验项目挖掘;细胞形态学、检验医学数据处理、辅助诊断模型以及基于互联网的医学检验。随着工业4.0时代的到来,AI技术将推动医学检验从自动化发展到高度智能化阶段。

相似文献

1
[Artificial intelligence empowers laboratory medicine in Industry 4.0].
Nan Fang Yi Ke Da Xue Xue Bao. 2020 Feb 29;40(2):287-296. doi: 10.12122/j.issn.1673-4254.2020.02.23.
4
Application of 5G network combined with AI robots in personalized nursing in China: A literature review.
Front Public Health. 2022 Aug 24;10:948303. doi: 10.3389/fpubh.2022.948303. eCollection 2022.
5
The Impact of the Integrated Development of AI and Energy Industry on Regional Energy Industry: A Case of China.
Int J Environ Res Public Health. 2021 Aug 25;18(17):8946. doi: 10.3390/ijerph18178946.
6
Potential impact of artificial intelligence on the emerging world order.
F1000Res. 2023 Oct 30;11:1186. doi: 10.12688/f1000research.124906.2. eCollection 2022.
7
Artificial intelligence and automation in valvular heart diseases.
Cardiol J. 2020;27(4):404-420. doi: 10.5603/CJ.a2020.0087. Epub 2020 Jun 22.
8
The Research and Development Thinking on the Status of Artificial Intelligence in Traditional Chinese Medicine.
Evid Based Complement Alternat Med. 2022 May 2;2022:7644524. doi: 10.1155/2022/7644524. eCollection 2022.
9
Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model.
PLoS One. 2023 Mar 3;18(3):e0282158. doi: 10.1371/journal.pone.0282158. eCollection 2023.

引用本文的文献

1
Clinlabomics: leveraging clinical laboratory data by data mining strategies.
BMC Bioinformatics. 2022 Sep 24;23(1):387. doi: 10.1186/s12859-022-04926-1.

本文引用的文献

1
Novel Biochemical Insights in the Cerebrospinal Fluid of Patients with Neurosyphilis Based on a Metabonomics Study.
J Mol Neurosci. 2019 Sep;69(1):39-48. doi: 10.1007/s12031-019-01320-0. Epub 2019 Jul 18.
2
Automated coronary artery tree segmentation in X-ray angiography using improved Hessian based enhancement and statistical region merging.
Comput Methods Programs Biomed. 2018 Apr;157:179-190. doi: 10.1016/j.cmpb.2018.01.002. Epub 2018 Jan 31.
3
Liver tissue metabolic profiling and pathways of non-alcoholic steatohepatitis in rats.
Hepatol Res. 2017 Dec;47(13):1484-1493. doi: 10.1111/hepr.12876. Epub 2017 Apr 5.
4
What Makes for Effective Detection Proposals?
IEEE Trans Pattern Anal Mach Intell. 2016 Apr;38(4):814-30. doi: 10.1109/TPAMI.2015.2465908.
5
Artificial Neural Network for Total Laboratory Automation to Improve the Management of Sample Dilution.
SLAS Technol. 2017 Feb;22(1):44-49. doi: 10.1177/2211068216636635. Epub 2016 Jul 10.
6
An efficient method for automatic morphological abnormality detection from human sperm images.
Comput Methods Programs Biomed. 2015 Dec;122(3):409-20. doi: 10.1016/j.cmpb.2015.08.013. Epub 2015 Sep 4.
8
Erratum to: Modeling precision treatment of breast cancer.
Genome Biol. 2015 May 12;16(1):95. doi: 10.1186/s13059-015-0658-5.
9
¹H NMR-based serum metabolic profiling in compensated and decompensated cirrhosis.
World J Gastroenterol. 2012 Jan 21;18(3):285-90. doi: 10.3748/wjg.v18.i3.285.
10
A modular framework for the automatic classification of chromosomes in Q-band images.
Comput Methods Programs Biomed. 2012 Feb;105(2):120-30. doi: 10.1016/j.cmpb.2011.07.013. Epub 2011 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验