Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany.
Department of Materials Science, Fudan University, Shanghai 200433, China.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25625-25632. doi: 10.1021/acsami.0c05588. Epub 2020 May 26.
The prolonged use of enzymes under oxidative stress is a major challenge in enabling effective enzymatic reaction pathways. Herein, we report a biomimetic antioxidant defensive strategy capable of providing adequate protection of enzymes against superoxide-mediated oxidation. Superoxide dismutase (SOD) and catalase (CAT) were chosen as scavengers and covalently encapsulated into silica nanoreactors, together with glucose dehydrogenase (GDH), which simultaneously should produce the coenzyme nicotinamide adenine dinucleotide (NADH, reduced form). By the enzymatic reactions of SOD and CAT, the interior of silica nanoreactors becomes a "ROS safe zone" to protect the glucose-dependent NADH production of coencapsulated GDH. We further combined this protected NADH-producing module with photocatalytic nanoparticles that enable the light-triggered oxidation of NADH back to NAD (oxidized form). In combination, these two modules allow interconversion between NAD and NADH by the addition of glucose or by light irradiation (LED lamp or sunlight). This protection and regeneration strategy is a versatile tool for enzyme applications for biological reactors, catalysis, or prototypes of artificial organelles or building blocks that contains fragile biomolecules and rely on the coenzyme NAD/NADH.
在氧化应激下长期使用酶是实现有效酶反应途径的主要挑战。在此,我们报告了一种仿生抗氧化防御策略,能够为酶提供足够的保护,防止超氧化物介导的氧化。超氧化物歧化酶 (SOD) 和过氧化氢酶 (CAT) 被选为清除剂,并与葡萄糖脱氢酶 (GDH) 共价封装在二氧化硅纳米反应器中,同时应该产生辅酶烟酰胺腺嘌呤二核苷酸 (NADH,还原形式)。通过 SOD 和 CAT 的酶反应,二氧化硅纳米反应器的内部成为“ROS 安全区”,以保护共包封的 GDH 的葡萄糖依赖性 NADH 产生。我们进一步将这个受保护的 NADH 产生模块与光催化纳米粒子结合,使 NADH 能够在光触发下氧化回 NAD(氧化形式)。结合使用时,这两个模块通过添加葡萄糖或通过光照(LED 灯或阳光)允许 NAD 和 NADH 之间的相互转换。这种保护和再生策略是一种多功能工具,可用于生物反应器、催化或包含脆弱生物分子并依赖辅酶 NAD/NADH 的人工细胞器或构建块中的酶应用。