Suppr超能文献

二维拓扑绝缘体的工程角态

Engineering Corner States from Two-Dimensional Topological Insulators.

作者信息

Ren Yafei, Qiao Zhenhua, Niu Qian

机构信息

ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Phys Rev Lett. 2020 Apr 24;124(16):166804. doi: 10.1103/PhysRevLett.124.166804.

Abstract

We theoretically demonstrate that the second-order topological insulator with robust corner states can be realized in two-dimensional Z_{2} topological insulators by applying an in-plane Zeeman field. The Zeeman field breaks the time-reversal symmetry and thus destroys the Z_{2} topological phase. Nevertheless, it respects some crystalline symmetries and thus can protect the higher-order topological phase. By taking the Kane-Mele model as a concrete example, we find that spin-helical edge states along zigzag boundaries are gapped out by the Zeeman field whereas the in-gap corner state at the intersection between two zigzag edges arises, which is independent of the field orientation. We further show that the corner states are robust against the out-of-plane Zeeman field, staggered sublattice potentials, Rashba spin-orbit coupling, and the buckling of honeycomb lattices, making them experimentally feasible. Similar behaviors can also be found in the well-known Bernevig-Hughes-Zhang model.

摘要

我们从理论上证明,通过施加面内塞曼场,可以在二维Z₂拓扑绝缘体中实现具有稳健角态的二阶拓扑绝缘体。塞曼场打破了时间反演对称性,从而破坏了Z₂拓扑相。然而,它保留了一些晶体对称性,因此可以保护高阶拓扑相。以Kane-Mele模型为例,我们发现沿锯齿形边界的自旋螺旋边缘态被塞曼场隙开,而在两条锯齿形边缘相交处出现了带隙内的角态,该角态与场的取向无关。我们进一步表明,这些角态对于面外塞曼场、交错亚晶格势、Rashba自旋轨道耦合以及蜂窝晶格的屈曲具有稳健性,使其在实验上可行。在著名的Bernevig-Hughes-Zhang模型中也能发现类似的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验