Ding Jihua, Wang Jianbo, Zhou Xue, Liu Yu, Sun Ke, Adeyeye Adekunle Olusola, Fu Huixing, Ren Xiaofang, Li Sumin, Luo Pengshun, Lan Zhongwen, Yang Shanqing, Luo Jun
MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
Phys Rev Lett. 2020 Apr 24;124(16):161801. doi: 10.1103/PhysRevLett.124.161801.
We report on an experimental test of the velocity and spin dependent exotic interaction that can be mediated by new light bosons. The interaction is searched by measuring the force between a gold sphere and a microfabricated magnetic structure using a cantilever. The magnetic structure consists of stripes with antiparallel electron spin polarization so that the exotic interaction between the polarized electrons in the magnetic structure and the unpolarized nucleons in the gold sphere varies periodically, which helps to suppress the spurious background signals. The experiment sets the strongest laboratory constraints on the coupling constant between electrons and nucleons at the micrometer range with f_{⊥}<5.3×10^{-8} at λ=5 μm.
我们报道了一项关于速度和自旋相关的奇异相互作用的实验测试,这种相互作用可由新的轻玻色子介导。通过使用悬臂测量金球与微纳加工磁性结构之间的力来探寻这种相互作用。该磁性结构由具有反平行电子自旋极化的条纹组成,使得磁性结构中极化电子与金球中未极化核子之间的奇异相互作用呈周期性变化,这有助于抑制杂散背景信号。该实验在微米尺度上对电子与核子之间的耦合常数设定了最强的实验室限制,在波长λ = 5μm时,横向耦合常数f⊥ < 5.3×10⁻⁸ 。