Suppr超能文献

格林-久保公式中的非局域粘度。

Non-local viscosity from the Green-Kubo formula.

作者信息

Duque-Zumajo D, de la Torre J A, Español Pep

机构信息

Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid, Spain.

出版信息

J Chem Phys. 2020 May 7;152(17):174108. doi: 10.1063/5.0006212.

Abstract

We study through MD simulations the correlation matrix of the discrete transverse momentum density field in real space for an unconfined Lennard-Jones fluid at equilibrium. Mori theory predicts this correlation under the Markovian approximation from the knowledge of the non-local shear viscosity matrix, which is given in terms of a Green-Kubo formula. However, the running Green-Kubo integral for the non-local shear viscosity does not have a plateau. By using a recently proposed correction for the Green-Kubo formula that eliminates the plateau problem [Español et al., Phys. Rev. E 99, 022126 (2019)], we unambiguously obtain the actual non-local shear viscosity. The resulting Markovian equation, being local in time, is not valid for very short times. We observe that the Markovian equation with non-local viscosity gives excellent predictions for the correlation matrix from a time at which the correlation is around 80% of its initial value. A local in space approximation for the viscosity gives accurate results only after the correlation has decayed to 40% of its initial value.

摘要

我们通过分子动力学(MD)模拟研究了平衡态下无约束 Lennard-Jones 流体在实空间中离散横向动量密度场的关联矩阵。森理论在马尔可夫近似下,根据非局部剪切粘度矩阵的知识预测了这种关联,该矩阵由格林-久保公式给出。然而,非局部剪切粘度的运行格林-久保积分没有平台期。通过使用最近提出的对格林-久保公式的修正来消除平台期问题[埃斯帕尼奥尔等人,《物理评论 E》99,022126(2019)],我们明确地获得了实际的非局部剪切粘度。所得的马尔可夫方程在时间上是局部的,在非常短的时间内无效。我们观察到,具有非局部粘度的马尔可夫方程对于从关联约为其初始值的 80%的时刻起的关联矩阵给出了出色的预测。粘度的空间局部近似仅在关联衰减到其初始值的 40%之后才给出准确结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验