Department of Experimental Cardiology, Amsterdam UMC (location Academic Medical Center), Amsterdam, the Netherlands.
Department of Medical Biology, Amsterdam UMC (location Academic Medical Center), Amsterdam, the Netherlands.
Acta Physiol (Oxf). 2020 Oct;230(2):e13493. doi: 10.1111/apha.13493. Epub 2020 May 27.
The voltage-gated sodium channel Na 1.5, encoded by SCN5A, is essential for cardiac excitability and ensures proper electrical conduction. Early embryonic death has been observed in several murine models carrying homozygous Scn5amutations. We investigated when sodium current (I ) becomes functionally relevant in the murine embryonic heart and how Scn5a/Na 1.5 dysfunction impacts on cardiac development.
Involvement of Na 1.5-generated I in murine cardiac electrical function was assessed by optical mapping in wild type (WT) embryos (embryonic day (E)9.5 and E10.5) in the absence and presence of the sodium channel blocker tetrodotoxin (30 µmol/L). I was assessed by patch-clamp analysis in cardiomyocytes isolated from WT embryos (E9.5-17.5). In addition, cardiac morphology and electrical function was assessed in Scn5a-1798insD embryos (E9.5-10.5) and their WT littermates.
In WT embryos, tetrodotoxin did not affect cardiac activation at E9.5, but slowed activation at E10.5. Accordingly, patch-clamp measurements revealed that I was virtually absent at E9.5 but robustly present at E10.5. Scn5a-1798insD embryos died in utero around E10.5, displaying severely affected cardiac activation and morphology. Strikingly, altered ventricular activation was observed in Scn5a-1798insD E9.5 embryos before the onset of I , in addition to reduced cardiac tissue volume compared to WT littermates.
We here demonstrate that Na 1.5 is involved in cardiac electrical function from E10.5 onwards. Scn5a-1798insD embryos displayed cardiac structural abnormalities at E9.5, indicating that Na 1.5 dysfunction impacts on embryonic cardiac development in a non-electrogenic manner. These findings are potentially relevant for understanding structural defects observed in relation to Na 1.5 dysfunction.
电压门控钠离子通道 Na 1.5 由 SCN5A 编码,对心脏兴奋性至关重要,确保了正常的电传导。几种携带纯合 Scn5a 突变的鼠模型都观察到早期胚胎死亡。我们研究了 Na 1.5 电流(I)在鼠胚胎心脏中何时具有功能相关性,以及 Scn5a/Na 1.5 功能障碍如何影响心脏发育。
在野生型(WT)胚胎(胚胎日(E)9.5 和 E10.5)中,通过光学映射评估 Na 1.5 产生的 I 在鼠心脏电功能中的作用,在不存在和存在钠离子通道阻滞剂河豚毒素(30 μmol/L)的情况下进行评估。通过从 WT 胚胎(E9.5-17.5)分离的心肌细胞进行膜片钳分析来评估 I。此外,还评估了 Scn5a-1798insD 胚胎(E9.5-10.5)及其 WT 同窝仔鼠的心脏形态和电功能。
在 WT 胚胎中,河豚毒素在 E9.5 时不会影响心脏激活,但在 E10.5 时会减慢激活。相应地,膜片钳测量显示,I 在 E9.5 时几乎不存在,但在 E10.5 时强烈存在。Scn5a-1798insD 胚胎在 E10.5 左右死于子宫内,表现出严重的心脏激活和形态异常。引人注目的是,在 I 出现之前,即在 E9.5 时,就已经观察到 Scn5a-1798insD 胚胎的心室激活发生改变,与 WT 同窝仔鼠相比,心脏组织体积也减少了。
我们在此证明,Na 1.5 从 E10.5 开始参与心脏电功能。Scn5a-1798insD 胚胎在 E9.5 时出现心脏结构异常,表明 Na 1.5 功能障碍以非电生成方式影响胚胎心脏发育。这些发现对于理解与 Na 1.5 功能障碍相关的结构缺陷具有潜在意义。