Suppr超能文献

遗传分数阶波动方程的能量耗散与非局部分数阶波动方程的能量守恒

Energy dissipation for hereditary and energy conservation for non-local fractional wave equations.

作者信息

Zorica Dušan, Oparnica Ljubica

机构信息

Mathematical Institute, Serbian Academy of Arts and Sciences, Kneza Mihaila 36, 11000 Belgrade, Serbia.

Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190295. doi: 10.1098/rsta.2019.0295. Epub 2020 May 11.

Abstract

Using the method of energy estimates, energy dissipation is proved for the class of hereditary fractional wave equations, obtained through the system of equations consisting of equation of motion, strain and fractional order constitutive models, that include the distributed-order constitutive law in which the integration is performed from zero to one generalizing all linear constitutive models of fractional and integer orders, as well as for the thermodynamically consistent fractional Burgers models, where the orders of fractional differentiation are up to the second order. In the case of non-local fractional wave equations, obtained using non-local constitutive models of Hooke- and Eringen-type in addition to the equation of motion and strain, energy estimates yield the energy conservation, with the reinterpreted notion of the potential energy. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.

摘要

运用能量估计方法,对于一类遗传分数阶波动方程证明了能量耗散。这类方程是通过由运动方程、应变方程和分数阶本构模型组成的方程组得到的,其中包括分布阶本构定律,即从零到一进行积分,推广了所有分数阶和整数阶的线性本构模型,以及对于热力学一致的分数阶伯格斯模型,其中分数阶导数的阶数高达二阶。在非局部分数阶波动方程的情况下,除了运动方程和应变方程外,还使用胡克型和埃林根型非局部本构模型得到,能量估计得出能量守恒,并对势能概念进行了重新诠释。本文是主题为“通过分数阶微积分进行先进材料建模:挑战与展望”的一部分。

相似文献

1
Energy dissipation for hereditary and energy conservation for non-local fractional wave equations.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190295. doi: 10.1098/rsta.2019.0295. Epub 2020 May 11.
2
On the thermodynamical restrictions in isothermal deformations of fractional Burgers model.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190278. doi: 10.1098/rsta.2019.0278. Epub 2020 May 11.
3
Fractional-order heat conduction models from generalized Boltzmann transport equation.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190280. doi: 10.1098/rsta.2019.0280. Epub 2020 May 11.
4
Advanced materials modelling via fractional calculus: challenges and perspectives.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20200050. doi: 10.1098/rsta.2020.0050. Epub 2020 May 11.
5
Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
Ultrasound Med Biol. 2014 Apr;40(4):695-703. doi: 10.1016/j.ultrasmedbio.2013.09.033. Epub 2014 Jan 13.
6
Fractional-order modelling of epoxy resin.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190292. doi: 10.1098/rsta.2019.0292. Epub 2020 May 11.
7
Application of fractional calculus methods to viscoelastic behaviours of solid propellants.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190291. doi: 10.1098/rsta.2019.0291. Epub 2020 May 11.
9
Thermo-poromechanics of fractal media.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190288. doi: 10.1098/rsta.2019.0288. Epub 2020 May 11.
10
A novel approach to nonlinear variable-order fractional viscoelasticity.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190296. doi: 10.1098/rsta.2019.0296. Epub 2020 May 11.

引用本文的文献

1
Advanced materials modelling via fractional calculus: challenges and perspectives.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20200050. doi: 10.1098/rsta.2020.0050. Epub 2020 May 11.

本文引用的文献

1
Space-time fractional Zener wave equation.
Proc Math Phys Eng Sci. 2015 Feb 8;471(2174):20140614. doi: 10.1098/rspa.2014.0614.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验