Department of Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
Big Data. 2020 Jun;8(3):189-202. doi: 10.1089/big.2019.0143. Epub 2020 May 12.
Community detection problem is a projection of data clustering where the network's topological properties are only considered for measuring similarities among nodes. Also, finding communities' kernel nodes and expanding a community from kernel will certainly help us to find optimal communities. Among the existing community detection approaches, the affinity propagation (AP)-based method has been showing promising results and does not require any predefined information such as the number of clusters (communities). AP is an exemplar-based clustering method that defines the negative real-valued similarity measure between data point and exemplar as the probability of being the exemplar of data point . According to our intuition, the value of should not be identical to . In this study, a new version of AP using an adaptive similarity matrix, namely affinity propagation with adaptive similarity (APAS) matrix, is proposed, which could efficiently show the leadership probabilities between data points. APAS can adaptively transform the symmetric similarity matrix into an asymmetric one. It outperforms AP method in terms of accuracy. Extensive experiments conducted on artificial and real-world networks demonstrate the effectiveness of our approach.
社区发现问题是数据聚类的一种投影,其中仅考虑网络的拓扑性质来衡量节点之间的相似性。此外,找到社区的核心节点并从核心扩展社区肯定会帮助我们找到最佳社区。在现有的社区检测方法中,基于相似传播(AP)的方法已经显示出了很有前途的结果,并且不需要任何预定义的信息,例如集群(社区)的数量。AP 是一种基于范例的聚类方法,它将数据点 与范例 之间的负实值相似性度量定义为 作为数据点 的范例的概率 。根据我们的直觉, 的值不应该与 相同。在这项研究中,提出了一种使用自适应相似性矩阵的新的 AP 版本,即带有自适应相似性(APAS)矩阵的相似传播,它可以有效地显示数据点之间的领导概率。APAS 可以自适应地将对称相似性矩阵转换为非对称矩阵。它在准确性方面优于 AP 方法。在人工和真实网络上进行的广泛实验证明了我们方法的有效性。