Suppr超能文献

肼促进的金属纳米粒子功能化梯度多孔聚(离子液体)膜的一步合成

Hydrazine-Enabled One-Step Synthesis of Metal Nanoparticle-Functionalized Gradient Porous Poly(ionic liquid) Membranes.

作者信息

KhorsandKheirabad Atefeh, Zhou Xianjing, Xie Dongjiu, Wang Hong, Yuan Jiayin

机构信息

Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden.

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

出版信息

Macromol Rapid Commun. 2021 Apr;42(8):e2000143. doi: 10.1002/marc.202000143. Epub 2020 May 14.

Abstract

In this communication, a one-step synthetic route is reported toward free-standing metal-nanoparticle-functionalized gradient porous polyelectrolyte membranes (PPMs). The membranes are produced by soaking a glass-plate-supported blend film that consists of a hydrophobic poly(ionic liquid) (PIL), poly(acrylic acid), and a metal salt, into an aqueous hydrazine solution. Upon diffusion of water and hydrazine molecules into the blend film, a phase separation process of the hydrophobic PIL and an ionic crosslinking reaction via interpolyelectrolyte complexation occur side by side to form the PPM. Simultaneously, due to the reductive nature of hydrazine, the metal salt inside the polymer blend film is reduced in situ by hydrazine into metal nanoparticles that anchor onto the PPM. The as-obtained hybrid porous membrane is proven functional in the catalytic reduction of p-nitrophenol. This one-step method to grow metal nanoparticles and gradient porous membranes can simplify future fabrication processes of multifunctional PPMs.

摘要

在本通讯中,报道了一种制备独立式金属纳米粒子功能化梯度多孔聚电解质膜(PPMs)的一步合成路线。该膜是通过将由疏水性聚离子液体(PIL)、聚丙烯酸和金属盐组成的玻璃板支撑共混膜浸泡在水合肼溶液中制备而成。当水和水合肼分子扩散到共混膜中时,疏水性PIL的相分离过程和通过聚电解质络合的离子交联反应同时发生,从而形成PPM。同时,由于水合肼的还原性,聚合物共混膜内的金属盐被水合肼原位还原为锚定在PPM上的金属纳米粒子。所获得的混合多孔膜在对硝基苯酚的催化还原中被证明具有功能性。这种生长金属纳米粒子和梯度多孔膜的一步法可以简化未来多功能PPM的制造工艺。

相似文献

1
Hydrazine-Enabled One-Step Synthesis of Metal Nanoparticle-Functionalized Gradient Porous Poly(ionic liquid) Membranes.
Macromol Rapid Commun. 2021 Apr;42(8):e2000143. doi: 10.1002/marc.202000143. Epub 2020 May 14.
2
Ferrocene-Containing Porous Poly(Ionic Liquid) Membranes: Synthesis and Application as Sacrificial Template for Porous Iron Oxide Films.
Macromol Rapid Commun. 2021 Jul;42(13):e2100077. doi: 10.1002/marc.202100077. Epub 2021 Jun 1.
3
Porous Poly(ionic Liquid) Membrane with Metal Nanoparticle Gradient: A Smart Actuator for Visualizing Chemical Reactions.
Macromol Rapid Commun. 2024 Apr;45(8):e2300676. doi: 10.1002/marc.202300676. Epub 2024 Jan 23.
5
Porous Poly(Ionic Liquid) Membranes as Efficient and Recyclable Absorbents for Heavy Metal Ions.
Macromol Rapid Commun. 2017 Jul;38(14). doi: 10.1002/marc.201700151. Epub 2017 May 22.
6
Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s.
Macromol Rapid Commun. 2015 Dec;36(24):2176-80. doi: 10.1002/marc.201500480. Epub 2015 Oct 15.
7
Stable Covalently Photo-Crosslinked Poly(Ionic Liquid) Membrane with Gradient Pore Size.
Macromol Rapid Commun. 2017 Aug;38(16). doi: 10.1002/marc.201700167. Epub 2017 Jun 26.
9
Tuning the Pore Size in Gradient Poly(ionic liquid) Membranes by Small Organic Acids.
ACS Macro Lett. 2015 Jan 20;4(1):39-42. doi: 10.1021/mz500674d. Epub 2014 Dec 18.
10
Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes.
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):17187-17191. doi: 10.1002/anie.202002679. Epub 2020 Aug 6.

引用本文的文献

1
Ice-Assisted Porous Poly(ionic liquid)/MXene Composite Membranes for Solar Steam Generation.
ACS Appl Mater Interfaces. 2023 Dec 6;15(48):56347-56355. doi: 10.1021/acsami.3c15551. Epub 2023 Nov 20.
2
A Highly Sensitive, Ultra-Durable, Eco-Friendly Ionic Skin for Human Motion Monitoring.
Polymers (Basel). 2022 May 6;14(9):1902. doi: 10.3390/polym14091902.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验