Liu Kewei, Jiang Sisi, Dzwiniel Trevor L, Kim Hong-Keun, Yu Zhou, Dietz Rago Nancy L, Kim Jae Jin, Fister Timothy T, Yang Jianzhong, Liu Qian, Gilbert James, Cheng Lei, Srinivasan Venkat, Zhang Zhengcheng, Liao Chen
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29162-29172. doi: 10.1021/acsami.0c03363. Epub 2020 May 29.
Single-ion conducting (SIC) polymer electrolytes with a high Li transference number () have shown the capability to enable enhanced battery performance and safety by avoiding liquid-electrolyte leakage and suppressing Li dendrite formation. However, issues of insufficient ionic conductivity, low electrochemical stability, and poor polymer/electrode interfacial contact have greatly hindered their commercial use. Here, a Li-containing boron-centered fluorinated SIC polymer gel electrolyte (LiBFSIE) was rationally designed to achieve a high and high electrochemical stability. Owing to the low dissociation energy of the boron-centered anion and Li, the as-prepared LiBFSIE exhibited an ionic conductivity of 2 × 10 S/cm at 35 °C, which is exclusively contributed by Li ions owing to a high of 0.93. Both simulation and experimental approaches were applied to investigate the ion diffusion and concentration gradient in the LiBFSIE and non-cross-linked dual-ion systems. Typical rectangular Li stripping/plating voltage profiles demonstrated the uniform Li deposition assisted by LiBFSIE. The interfacial contact and electrolyte infiltration were further optimized with an UV-vis-initiated polymerization method together with the electrode materials. By virtue of the high electrochemical stability of LiBFSIE, the cells achieved a promising average Coulombic efficiency of 99.95% over 200 cycles, which is higher than that of liquid-electrolyte-based cells. No obvious capacity fading was observed, indicating the long-term stability of LiBFSIE for lithium metal batteries.
具有高锂离子迁移数()的单离子传导(SIC)聚合物电解质已显示出通过避免液体电解质泄漏和抑制锂枝晶形成来提高电池性能和安全性的能力。然而,离子电导率不足、电化学稳定性低以及聚合物/电极界面接触不良等问题极大地阻碍了它们的商业应用。在此,合理设计了一种含锂的硼中心氟化SIC聚合物凝胶电解质(LiBFSIE),以实现高和高电化学稳定性。由于硼中心阴离子和锂的离解能低,所制备的LiBFSIE在35°C时表现出2×10 S/cm的离子电导率,由于高达0.93,这完全由锂离子贡献。采用模拟和实验方法研究了LiBFSIE和非交联双离子体系中的离子扩散和浓度梯度。典型的矩形锂剥离/电镀电压曲线证明了LiBFSIE辅助下锂的均匀沉积。通过紫外可见引发聚合方法与电极材料一起进一步优化了界面接触和电解质浸润。凭借LiBFSIE的高电化学稳定性,电池在200次循环中实现了99.95%的有前景的平均库仑效率,高于基于液体电解质的电池。未观察到明显的容量衰减,表明LiBFSIE对锂金属电池具有长期稳定性。