Suppr超能文献

计算机辅助结构预测蓝舌病病毒外壳蛋白 VP2 的优化液体模拟势能 (OPLS) 辅助。

Computer-Aided Structure Prediction of Bluetongue Virus Coat Protein VP2 Assisted by Optimized Potential for Liquid Simulations (OPLS).

机构信息

Department of Environmental Science and Technology, Central University of Punjab, Bathinda-151001, Punjab, India.

In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India.

出版信息

Curr Top Med Chem. 2020;20(19):1720-1732. doi: 10.2174/1568026620666200516153753.

Abstract

BACKGROUND

The capsid coated protein of Bluetongue virus (BTV) VP2 is responsible for BTV transmission by the Culicoides vector to vertebrate hosts. Besides, VP2 is responsible for BTV entry into permissive cells and hence plays a major role in disease progression. However, its mechanism of action is still unknown.

OBJECTIVE

The present investigation aimed to predict the 3D structure of Viral Protein 2 of the bluetongue virus assisted by Optimized Potential for Liquid Simulations (OPLS), structure validation, and an active site prediction.

METHODS

The 3D structure of the VP2 protein was built using a Python-based Computational algorithm. The templates were identified using Smith waterman's Local alignment. The VP2 protein structure validated using PROCHECK. Molecular Dynamics Simulation (MDS) studies were performed using an academic software Desmond, Schrodinger dynamics, for determining the stability of a model protein. The Ligand-Binding site was predicted by structure comparison using homology search and proteinprotein network analysis to reveal their stability and inhibition mechanism, followed by the active site identification.

RESULTS

The secondary structure of the VP2 reveals that the protein contains 220 alpha helix atoms, 40 310 helix, 151 beta sheets, 134 coils and 424 turns, whereas the 3D structure of Viral Protein 2 of BTV has been found to have 15774 total atoms in the structure. However, 961 amino acids were found in the final model. The dynamical cross-correlation matrix (DCCM) analysis tool identifies putative protein domains and also confirms the stability of the predicted model and their dynamical behavior difference with the correlative fluctuations in motion.

CONCLUSION

The biological interpretation of the Viral Protein 2 was carried out. DCCM maps were calculated, using a different coordinate reference frame, through which, protein domain boundaries and protein domain residue constituents were identified. The obtained model shows good reliability. Moreover, we anticipated that this research should play a promising role in the identification of novel candidates with the target protein to inhibit their functional significance.

摘要

背景

蓝舌病毒(BTV)的衣壳蛋白 VP2 负责经库蠓媒介向脊椎动物宿主传播 BTV。此外,VP2 负责 BTV 进入许可细胞,因此在疾病进展中起主要作用。然而,其作用机制尚不清楚。

目的

本研究旨在通过优化液体模拟势能(OPLS)、结构验证和活性位点预测,预测蓝舌病毒病毒蛋白 2 的 3D 结构。

方法

使用基于 Python 的计算算法构建 VP2 蛋白的 3D 结构。使用 Smith waterman 的局部比对来识别模板。使用 PROCHECK 验证 VP2 蛋白结构。使用学术软件 Desmond、Schrodinger dynamics 进行分子动力学模拟(MDS)研究,以确定模型蛋白的稳定性。通过结构比较预测配体结合位点,使用同源搜索和蛋白质-蛋白质网络分析来揭示它们的稳定性和抑制机制,然后确定活性位点。

结果

VP2 的二级结构表明,该蛋白包含 220 个α螺旋原子、40 个 310 螺旋、151 个β片层、134 个卷曲和 424 个转角,而 BTV 的病毒蛋白 2 的 3D 结构在结构中发现总共有 15774 个原子。然而,最终模型中发现了 961 个氨基酸。动态互相关矩阵(DCCM)分析工具可识别推定的蛋白质结构域,并确认预测模型的稳定性及其与相关运动的动态行为差异。

结论

对病毒蛋白 2 进行了生物学解释。使用不同的坐标参考系计算了 DCCM 图谱,通过该图谱确定了蛋白质结构域边界和蛋白质结构域残基组成。获得的模型具有良好的可靠性。此外,我们预计这项研究应该在识别具有靶蛋白的新型候选物方面发挥有前途的作用,以抑制其功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验