Franceschi Giada, Kraushofer Florian, Meier Matthias, Parkinson Gareth S, Schmid Michael, Diebold Ulrike, Riva Michele
Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria.
Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, 1090 Wien, Austria.
Chem Mater. 2020 May 12;32(9):3753-3764. doi: 10.1021/acs.chemmater.9b04908. Epub 2020 Apr 9.
Hematite (α-FeO) is one of the most investigated anode materials for photoelectrochemical water splitting. Its efficiency improves by doping with Ti, but the underlying mechanisms are not understood. One hurdle is separating the influence of doping on conductivity, surface states, and morphology, which all affect performance. To address this complexity, one needs well-defined model systems. We build such a model system by growing single-crystalline, atomically flat Ti-doped α-FeO(11̅02) films by pulsed laser deposition (PLD). We characterize their surfaces, combining in situ scanning tunneling microscopy (STM) with density functional theory (DFT), and reveal how dilute Ti impurities modify the atomic-scale structure of the surface as a function of the oxygen chemical potential and Ti content. Ti preferentially substitutes subsurface Fe and causes a local restructuring of the topmost surface layers. Based on the experimental quantification of Ti-induced surface modifications and the structural model we have established, we propose a strategy that can be used to separate the effects of Ti-induced modifications to the surface atomic and electronic structures and bulk conductivity on the reactivity of Ti-doped hematite.
赤铁矿(α - Fe₂O₃)是用于光电化学水分解研究最多的阳极材料之一。通过掺杂钛可提高其效率,但其潜在机制尚不清楚。一个障碍是要区分掺杂对电导率、表面态和形貌的影响,而这些都会影响性能。为解决这种复杂性,需要定义明确的模型体系。我们通过脉冲激光沉积(PLD)生长单晶、原子级平整的掺钛α - Fe₂O₃(11̅02)薄膜来构建这样一个模型体系。我们结合原位扫描隧道显微镜(STM)和密度泛函理论(DFT)对其表面进行表征,并揭示稀钛杂质如何根据氧化学势和钛含量改变表面的原子尺度结构。钛优先替代次表面的铁,并导致最顶层表面层的局部重构。基于对钛诱导的表面改性的实验量化以及我们建立的结构模型,我们提出了一种策略,可用于区分钛诱导的表面原子和电子结构改性以及体相电导率对掺钛赤铁矿反应活性的影响。