Cancer Biology Program, Stanford University, Stanford, CA 94305.
Department of Genetics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12143-12154. doi: 10.1073/pnas.1919528117. Epub 2020 May 18.
Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.
由混杂酶(如 TurboID)催化的邻近标记已使亚细胞区域的蛋白质组学分析成为可能,这些区域用传统的基于分级分离的方法难以或不可能接近。然而,一些细胞区域,如细胞器接触点,仍然无法使用当前的 PL 方法。为了解决这个限制,我们将酶 TurboID 分成两个不活跃的片段,当它们被蛋白质-蛋白质相互作用或膜-膜贴合驱动时重新组合。在内质网-线粒体接触点,重建的 TurboID 催化空间受限的生物素化,使 100 多种内源性蛋白质得以富集和鉴定,其中包括许多以前与内质网-线粒体接触没有联系的蛋白质。我们通过生化分级分离和过表达成像验证了 8 个候选物。总的来说,分裂-TurboID 是一种通用的工具,可用于细胞内的条件性和空间特异性邻近标记。