Suppr超能文献

视觉步态实验室:一种用户友好型的步态分析方法。

Visual Gait Lab: A user-friendly approach to gait analysis.

作者信息

Fiker Robert, Kim Linda H, Molina Leonardo A, Chomiak Taylor, Whelan Patrick J

机构信息

Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.

Department of Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.

出版信息

J Neurosci Methods. 2020 Jul 15;341:108775. doi: 10.1016/j.jneumeth.2020.108775. Epub 2020 May 16.

Abstract

BACKGROUND

Gait analysis forms a critical part of many lab workflows, ranging from those interested in preclinical neurological models to others who use locomotion as part of a standard battery of tests. Unfortunately, while paw detection can be semi-automated, it becomes generally a time-consuming process with error corrections. Improvement in paw tracking would aid in better gait analysis performance and experience.

NEW METHOD

Here we show the use of Visual Gait Lab (VGL), a high-level software with an intuitive, easy to use interface, that is built on DeepLabCut™. VGL is optimized to generate gait metrics and allows for quick manual error corrections. VGL comes with a single executable, streamlining setup on Windows systems. We demonstrate the use of VGL to analyze gait.

RESULTS

Training and evaluation of VGL were conducted using 200 frames (80/20 train-test split) of video from mice walking on a treadmill. The trained network was then used to visually track paw placements to compute gait metrics. These are processed and presented on the screen where the user can rapidly identify and correct errors.

COMPARISON WITH EXISTING METHODS

Gait analysis remains cumbersome, even with commercial software due to paw detection errors. DeepLabCut™ is an alternative that can improve visual tracking but is not optimized for gait analysis functionality.

CONCLUSIONS

VGL allows for gait analysis to be performed in a rapid, unbiased manner, with a set-up that can be easily implemented and executed by those without a background in computer programming.

摘要

背景

步态分析是许多实验室工作流程的关键部分,从关注临床前神经模型的人员到将运动作为标准测试组合一部分的其他人员。不幸的是,虽然爪子检测可以半自动化,但通常是一个需要纠错的耗时过程。爪子跟踪的改进将有助于提高步态分析性能和体验。

新方法

在这里,我们展示了视觉步态实验室(VGL)的使用,这是一个具有直观、易于使用界面的高级软件,它基于DeepLabCut™构建。VGL经过优化以生成步态指标,并允许快速手动纠错。VGL有一个单一的可执行文件,简化了在Windows系统上的设置。我们演示了使用VGL分析步态。

结果

使用小鼠在跑步机上行走的200帧视频(80/20训练-测试分割)对VGL进行训练和评估。然后使用训练好的网络直观地跟踪爪子位置以计算步态指标。这些指标在屏幕上进行处理和呈现,用户可以快速识别并纠正错误。

与现有方法的比较

即使使用商业软件,由于爪子检测错误,步态分析仍然很麻烦。DeepLabCut™是一种可以改善视觉跟踪的替代方法,但未针对步态分析功能进行优化。

结论

VGL允许以快速、无偏差的方式进行步态分析,其设置可以由没有计算机编程背景的人员轻松实现和执行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验