State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
Department of Data Sciences, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514. doi: 10.1093/nar/gkaa407.
Tumor progression and the efficacy of immunotherapy are strongly influenced by the composition and abundance of immune cells in the tumor microenvironment. Due to the limitations of direct measurement methods, computational algorithms are often used to infer immune cell composition from bulk tumor transcriptome profiles. These estimated tumor immune infiltrate populations have been associated with genomic and transcriptomic changes in the tumors, providing insight into tumor-immune interactions. However, such investigations on large-scale public data remain challenging. To lower the barriers for the analysis of complex tumor-immune interactions, we significantly improved our previous web platform TIMER. Instead of just using one algorithm, TIMER2.0 (http://timer.cistrome.org/) provides more robust estimation of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor profiles using six state-of-the-art algorithms. TIMER2.0 provides four modules for investigating the associations between immune infiltrates and genetic or clinical features, and four modules for exploring cancer-related associations in the TCGA cohorts. Each module can generate a functional heatmap table, enabling the user to easily identify significant associations in multiple cancer types simultaneously. Overall, the TIMER2.0 web server provides comprehensive analysis and visualization functions of tumor infiltrating immune cells.
肿瘤的进展和免疫疗法的疗效受到肿瘤微环境中免疫细胞的组成和丰度的强烈影响。由于直接测量方法的局限性,计算算法通常用于从批量肿瘤转录组谱中推断免疫细胞组成。这些估计的肿瘤免疫浸润群体与肿瘤中的基因组和转录组变化相关联,为肿瘤免疫相互作用提供了深入了解。然而,对大规模公共数据的此类研究仍然具有挑战性。为了降低分析复杂肿瘤免疫相互作用的障碍,我们对之前的 TIMER 网络平台进行了重大改进。TIMER2.0(http://timer.cistrome.org/)不仅使用一种算法,还使用六种最先进的算法为癌症基因组图谱(TCGA)或用户提供的肿瘤谱提供更稳健的免疫浸润水平估计。TIMER2.0 提供了四个模块用于研究免疫浸润与遗传或临床特征之间的关联,以及四个模块用于探索 TCGA 队列中的癌症相关关联。每个模块都可以生成功能热图表,使用户能够轻松地同时识别多种癌症类型中的显著关联。总的来说,TIMER2.0 网络服务器提供了肿瘤浸润免疫细胞的全面分析和可视化功能。
Nucleic Acids Res. 2020-7-2
Cancer Res. 2017-11-1
Genome Biol. 2016-8-22
Methods Mol Biol. 2018
Breast Cancer (Dove Med Press). 2025-8-29
Front Immunol. 2025-8-14
Funct Integr Genomics. 2025-9-1
Genome Med. 2020-2-26
Nat Genet. 2019-2-11
Nat Rev Drug Discov. 2019-3
Mol Cancer Res. 2018-8-31