文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TIMER2.0 用于分析肿瘤浸润免疫细胞。

TIMER2.0 for analysis of tumor-infiltrating immune cells.

机构信息

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Department of Data Sciences, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.

出版信息

Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514. doi: 10.1093/nar/gkaa407.


DOI:10.1093/nar/gkaa407
PMID:32442275
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7319575/
Abstract

Tumor progression and the efficacy of immunotherapy are strongly influenced by the composition and abundance of immune cells in the tumor microenvironment. Due to the limitations of direct measurement methods, computational algorithms are often used to infer immune cell composition from bulk tumor transcriptome profiles. These estimated tumor immune infiltrate populations have been associated with genomic and transcriptomic changes in the tumors, providing insight into tumor-immune interactions. However, such investigations on large-scale public data remain challenging. To lower the barriers for the analysis of complex tumor-immune interactions, we significantly improved our previous web platform TIMER. Instead of just using one algorithm, TIMER2.0 (http://timer.cistrome.org/) provides more robust estimation of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor profiles using six state-of-the-art algorithms. TIMER2.0 provides four modules for investigating the associations between immune infiltrates and genetic or clinical features, and four modules for exploring cancer-related associations in the TCGA cohorts. Each module can generate a functional heatmap table, enabling the user to easily identify significant associations in multiple cancer types simultaneously. Overall, the TIMER2.0 web server provides comprehensive analysis and visualization functions of tumor infiltrating immune cells.

摘要

肿瘤的进展和免疫疗法的疗效受到肿瘤微环境中免疫细胞的组成和丰度的强烈影响。由于直接测量方法的局限性,计算算法通常用于从批量肿瘤转录组谱中推断免疫细胞组成。这些估计的肿瘤免疫浸润群体与肿瘤中的基因组和转录组变化相关联,为肿瘤免疫相互作用提供了深入了解。然而,对大规模公共数据的此类研究仍然具有挑战性。为了降低分析复杂肿瘤免疫相互作用的障碍,我们对之前的 TIMER 网络平台进行了重大改进。TIMER2.0(http://timer.cistrome.org/)不仅使用一种算法,还使用六种最先进的算法为癌症基因组图谱(TCGA)或用户提供的肿瘤谱提供更稳健的免疫浸润水平估计。TIMER2.0 提供了四个模块用于研究免疫浸润与遗传或临床特征之间的关联,以及四个模块用于探索 TCGA 队列中的癌症相关关联。每个模块都可以生成功能热图表,使用户能够轻松地同时识别多种癌症类型中的显著关联。总的来说,TIMER2.0 网络服务器提供了肿瘤浸润免疫细胞的全面分析和可视化功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/7319575/30bbacc8784e/gkaa407fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/7319575/c6c84736f9b9/gkaa407fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/7319575/30bbacc8784e/gkaa407fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/7319575/c6c84736f9b9/gkaa407fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/7319575/30bbacc8784e/gkaa407fig2.jpg

相似文献

[1]
TIMER2.0 for analysis of tumor-infiltrating immune cells.

Nucleic Acids Res. 2020-7-2

[2]
TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

Cancer Res. 2017-11-1

[3]
Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.

Genome Biol. 2016-8-22

[4]
Computational Deconvolution of Tumor-Infiltrating Immune Components with Bulk Tumor Gene Expression Data.

Methods Mol Biol. 2020

[5]
Genomic Characterization of Six Virus-Associated Cancers Identifies Changes in the Tumor Immune Microenvironment and Altered Genetic Programs.

Cancer Res. 2018-9-25

[6]
TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment.

Nucleic Acids Res. 2021-1-8

[7]
Profiles of immune-related genes and immune cell infiltration in the tumor microenvironment of diffuse lower-grade gliomas.

J Cell Physiol. 2020-10

[8]
A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.

Lancet Oncol. 2018-8-14

[9]
Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures.

Front Immunol. 2021

[10]
Profiling Tumor Infiltrating Immune Cells with CIBERSORT.

Methods Mol Biol. 2018

引用本文的文献

[1]
Regional Transcriptomic Architecture of Glioblastoma Reveals NUCB2 as a Key Orchestrator of Tumour Aggression and Immune Dysfunction.

J Cell Mol Med. 2025-9

[2]
Comprehensive pan-cancer analysis reveals ubiquitin-conjugating enzyme 2T as a potential biomarker for prognosis and cancer immunity.

Oncol Lett. 2025-8-20

[3]
Bystin is a Prognosis and Immune Biomarker: From Pan-Cancer Analysis to Validation in Breast Cancer.

Breast Cancer (Dove Med Press). 2025-8-29

[4]
SMC2 as a potential prognostic biomarker in lung adenocarcinoma and its correlation with immune microenvironment.

Mol Clin Oncol. 2025-8-12

[5]
eQTL and multi-omics integration reveal PPIH as a prognostic and immunotherapeutic biomarker.

Front Immunol. 2025-8-14

[6]
PSD3 as a context-dependent modulator of immune landscape and tumor aggressiveness in esophageal squamous cell carcinoma.

Front Immunol. 2025-8-15

[7]
Integrated pan-cancer and melanoma-specific analysis of angiopoietin-2: prognostic value, immune microenvironment modulation, and ceRNA network regulation.

Discov Oncol. 2025-9-1

[8]
Comprehensive analysis of MAGE-A10 in pan-cancer and its validation in gastric cancer.

Sci Rep. 2025-9-1

[9]
Clinical significance of ANXA9 expression in colorectal cancer and its impact on immune evasion and drug resistance.

Discov Oncol. 2025-9-1

[10]
MED12-STAT1-TAP2 axis regulates CD8 + T cell cytotoxicity and mediates immunotherapy outcome in non-small cell lung cancer.

Funct Integr Genomics. 2025-9-1

本文引用的文献

[1]
The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression.

Genome Med. 2020-10-6

[2]
Large-scale public data reuse to model immunotherapy response and resistance.

Genome Med. 2020-2-26

[3]
B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma.

Nat Commun. 2019-9-13

[4]
Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.

Bioinformatics. 2019-7-15

[5]
Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data.

Genome Med. 2019-5-24

[6]
Chromosome 3q arm gain linked to immunotherapy response in advanced cutaneous squamous cell carcinoma.

Eur J Cancer. 2019-4-4

[7]
Landscape of B cell immunity and related immune evasion in human cancers.

Nat Genet. 2019-2-11

[8]
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.

Nat Rev Drug Discov. 2019-3

[9]
A Leukocyte Infiltration Score Defined by a Gene Signature Predicts Melanoma Patient Prognosis.

Mol Cancer Res. 2018-8-31

[10]
Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.

Nat Med. 2018-8-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索