Suppr超能文献

基于逻辑的基因表达数据分析预测基底样乳腺癌中 TNF、TGFB1 和 EGF 通路之间的关联。

Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer.

机构信息

Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea.

Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea.

出版信息

Methods. 2020 Jul 1;179:89-100. doi: 10.1016/j.ymeth.2020.05.008. Epub 2020 May 20.

Abstract

For breast cancer, clinically important subtypes are well characterized at the molecular level in terms of gene expression profiles. In addition, signaling pathways in breast cancer have been extensively studied as therapeutic targets due to their roles in tumor growth and metastasis. However, it is challenging to put signaling pathways and gene expression profiles together to characterize biological mechanisms of breast cancer subtypes since many signaling events result from post-translational modifications, rather than gene expression differences. We designed a logic-based computational framework to explain the differences in gene expression profiles among breast cancer subtypes using Pathway Logic and transcriptional network information. Pathway Logic is a rewriting-logic-based formal system for modeling biological pathways including post-translational modifications. Our method demonstrated its utility by constructing subtype-specific path from key receptors (TNFR, TGFBR1 and EGFR) to key transcription factor (TF) regulators (RELA, ATF2, SMAD3 and ELK1) and identifying potential association between pathways via TFs in basal-specific paths, which could provide a novel insight on aggressive breast cancer subtypes. Codes and results are available at http://epigenomics.snu.ac.kr/PL/.

摘要

对于乳腺癌,在分子水平上,根据基因表达谱对临床重要亚型进行了很好的描述。此外,由于在肿瘤生长和转移中的作用,乳腺癌中的信号通路已被广泛研究作为治疗靶点。然而,由于许多信号事件是由翻译后修饰引起的,而不是基因表达差异,因此将信号通路和基因表达谱结合起来描述乳腺癌亚型的生物学机制具有挑战性。我们设计了一个基于逻辑的计算框架,使用通路逻辑和转录网络信息来解释乳腺癌亚型之间基因表达谱的差异。通路逻辑是一种基于重写逻辑的形式系统,用于对包括翻译后修饰在内的生物途径进行建模。我们的方法通过构建从关键受体(TNFR、TGFBR1 和 EGFR)到关键转录因子(RELA、ATF2、SMAD3 和 ELK1)的亚型特异性通路,并通过在基底特异性路径中通过 TF 识别途径之间的潜在关联,证明了其在构建从关键受体(TNFR、TGFBR1 和 EGFR)到关键转录因子(RELA、ATF2、SMAD3 和 ELK1)的亚型特异性通路方面的实用性,这为侵袭性乳腺癌亚型提供了新的见解。代码和结果可在 http://epigenomics.snu.ac.kr/PL/ 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验