Mory C, Bonnet N, Colliex C, Kohl H, Tencé M
Laboratoire de Physique des Solides, Université de Paris-Sud, Orsay, France.
Scanning Microsc Suppl. 1988;2:329-42.
Scanning Transmission Electron Microscopes (STEM) offer specific characters, such as multidetector configuration, energy loss spectroscopy, external control of the probe raster, which make them quite suited to digital image acquisition and innovative data processing. Considering pixel intensities as random variables, one can apply cross-correlation techniques to pairs of duplicated images. Such methods are used to investigate imaging properties of the instrument, such as the point resolution and the signal to noise ratio, in its different working modes. Concerning the annular dark field, one shows that there exist optimum values for defocus and angle of illumination which minimize the probe size at a value of about 0.5 nm. The same techniques are also used to evaluate the characteristics of energy filtered images recorded in a specific energy window loss around an ionization edge: the degradation in edge resolution with respect to the accompanying ADF images is only of the order of 0.2 to 0.3 nm, which sets the delocalization parameter for an energy loss of 100 eV (i.e. for U-O4-5) well below 1 nm in agreement with theoretical predictions.
扫描透射电子显微镜(STEM)具有一些特殊特性,例如多探测器配置、能量损失谱、探头光栅的外部控制,这些特性使其非常适合数字图像采集和创新数据处理。将像素强度视为随机变量,可以对成对的重复图像应用互相关技术。此类方法用于研究仪器在不同工作模式下的成像特性,如点分辨率和信噪比。关于环形暗场,研究表明存在最佳的散焦值和照明角度,可使探头尺寸最小化至约0.5纳米。相同的技术还用于评估在电离边缘周围特定能量损失窗口记录的能量过滤图像的特性:相对于伴随的ADF图像,边缘分辨率的退化仅为0.2至0.3纳米量级,这使得100电子伏特能量损失(即对于U - O4 - 5)的离域参数远低于1纳米,与理论预测一致。