Suppr超能文献

鉴定具有类药性特异性的单克隆抗体的理化规则。

Physicochemical Rules for Identifying Monoclonal Antibodies with Drug-like Specificity.

机构信息

Biotherapeutics Discovery Department, Boehringer Ingelheim, Ridgefield, Connecticut 06877, United States.

出版信息

Mol Pharm. 2020 Jul 6;17(7):2555-2569. doi: 10.1021/acs.molpharmaceut.0c00257. Epub 2020 Jun 11.

Abstract

The ability of antibodies to recognize their target antigens with high specificity is fundamental to their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict levels of nonspecific and self-interactions that can lead to various drug development challenges, including antibody aggregation, abnormally high viscosity, and rapid antibody clearance. Here we report a method for predicting the overall specificity of antibodies in terms of their relative risk for displaying high levels of nonspecific or self-interactions at physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.

摘要

抗体识别其目标抗原的高特异性能力是其天然功能的基础。然而,治疗性抗体表现出可变的和难以预测的非特异性和自我相互作用水平,这可能导致各种药物开发挑战,包括抗体聚集、异常高的粘度和快速抗体清除。在这里,我们报告了一种根据抗体在生理条件下显示高水平非特异性或自我相互作用的相对风险来预测抗体整体特异性的方法。我们发现,限制抗体可变区中某些溶剂暴露氨基酸的最大和最小数量的单个和组合的化学规则是对大量临床前和临床阶段抗体进行特异性预测的强指标。我们还展示了如何使用化学规则来识别在次优抗体中介导非特异性相互作用的位点,并指导设计靶向亚文库,从而产生具有高抗体特异性的变体。这些发现可以很容易地用于改善具有类药性特异性的抗体的选择和工程。

相似文献

1
Physicochemical Rules for Identifying Monoclonal Antibodies with Drug-like Specificity.
Mol Pharm. 2020 Jul 6;17(7):2555-2569. doi: 10.1021/acs.molpharmaceut.0c00257. Epub 2020 Jun 11.
2
Toward Drug-Like Multispecific Antibodies by Design.
Int J Mol Sci. 2020 Oct 12;21(20):7496. doi: 10.3390/ijms21207496.
3
In vitro and in silico assessment of the developability of a designed monoclonal antibody library.
MAbs. 2019 Feb/Mar;11(2):388-400. doi: 10.1080/19420862.2018.1556082. Epub 2019 Jan 18.
6
Antibodies with Weakly Basic Isoelectric Points Minimize Trade-offs between Formulation and Physiological Colloidal Properties.
Mol Pharm. 2022 Mar 7;19(3):775-787. doi: 10.1021/acs.molpharmaceut.1c00373. Epub 2022 Feb 2.
9
Selecting and engineering monoclonal antibodies with drug-like specificity.
Curr Opin Biotechnol. 2019 Dec;60:119-127. doi: 10.1016/j.copbio.2019.01.008. Epub 2019 Feb 26.

引用本文的文献

1
Human antibody polyreactivity is governed primarily by the heavy-chain complementarity-determining regions.
Cell Rep. 2024 Oct 22;43(10):114801. doi: 10.1016/j.celrep.2024.114801. Epub 2024 Oct 10.
2
Developability considerations for bispecific and multispecific antibodies.
MAbs. 2024 Jan-Dec;16(1):2394229. doi: 10.1080/19420862.2024.2394229. Epub 2024 Aug 27.
3
Reduction of monoclonal antibody viscosity using interpretable machine learning.
MAbs. 2024 Jan-Dec;16(1):2303781. doi: 10.1080/19420862.2024.2303781. Epub 2024 Mar 12.
5
Quantitative flow cytometric selection of tau conformational nanobodies specific for pathological aggregates.
Front Immunol. 2023 Aug 9;14:1164080. doi: 10.3389/fimmu.2023.1164080. eCollection 2023.
6
How can we discover developable antibody-based biotherapeutics?
Front Mol Biosci. 2023 Aug 7;10:1221626. doi: 10.3389/fmolb.2023.1221626. eCollection 2023.
7
Simplifying complex antibody engineering using machine learning.
Cell Syst. 2023 Aug 16;14(8):667-675. doi: 10.1016/j.cels.2023.04.009.
9
Non-specificity as the sticky problem in therapeutic antibody development.
Nat Rev Chem. 2022 Dec;6(12):844-861. doi: 10.1038/s41570-022-00438-x. Epub 2022 Nov 14.

本文引用的文献

1
Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability.
Cell Rep. 2019 Sep 24;28(13):3300-3308.e4. doi: 10.1016/j.celrep.2019.08.056.
2
Improving the Developability of an Antigen Binding Fragment by Aspartate Substitutions.
Biochemistry. 2019 Jun 18;58(24):2750-2759. doi: 10.1021/acs.biochem.9b00251. Epub 2019 Jun 5.
3
Nature-inspired design and evolution of anti-amyloid antibodies.
J Biol Chem. 2019 May 24;294(21):8438-8451. doi: 10.1074/jbc.RA118.004731. Epub 2019 Mar 27.
4
Selecting and engineering monoclonal antibodies with drug-like specificity.
Curr Opin Biotechnol. 2019 Dec;60:119-127. doi: 10.1016/j.copbio.2019.01.008. Epub 2019 Feb 26.
5
Net charge of antibody complementarity-determining regions is a key predictor of specificity.
Protein Eng Des Sel. 2018 Nov 1;31(11):409-418. doi: 10.1093/protein/gzz002.
6
Biophysical and Sequence-Based Methods for Identifying Monovalent and Bivalent Antibodies with High Colloidal Stability.
Mol Pharm. 2018 Jan 2;15(1):150-163. doi: 10.1021/acs.molpharmaceut.7b00779. Epub 2017 Dec 6.
8
Nonspecificity in a nonimmune human scFv repertoire.
MAbs. 2017 Oct;9(7):1029-1035. doi: 10.1080/19420862.2017.1356528. Epub 2017 Sep 14.
9
Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs.
J Biol Chem. 2017 Oct 6;292(40):16638-16652. doi: 10.1074/jbc.M117.783837. Epub 2017 Aug 4.
10
Biophysical properties of the clinical-stage antibody landscape.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):944-949. doi: 10.1073/pnas.1616408114. Epub 2017 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验