State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, China.
X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA.
J Colloid Interface Sci. 2020 Sep 15;576:394-403. doi: 10.1016/j.jcis.2020.05.039. Epub 2020 May 16.
To well address the problem of low stability for Ru-based catalysts against sintering and leaching during synthesis and aqueous levulinic acid (LA) hydrogenation to γ-valerolactone (GVL), herein we demonstrate an "inside-to-outside" synthetic strategy for robust yolk-structured nanospheres within a single Ru nanoparticle (NP, 4.2 nm) anchored inside the mesoporous shell (pore size, 4.0 nm), denoted as YS Ru@HMCS (yolk-structured Ru encapsulated into hollow mesoporous carbon sphere). Such a shell-supported-core configuration combines the merits of conventional yolk-structured and supported types, in which the active core is not only fully exposed, but also strongly anchored on the shell, based on the optimized interaction between oxidized Ru NP and N-doped mesoporous carbon shell. As a consequence, the resultant YS Ru@HMCS, delivers a high LA conversion (99.4%), a large selectivity to GVL (99.9%), and prolonged cycling life (up to 9 cycles) under water towards the LA hydrogenation, that exceeds conventional yolk-structured and supported analogues. Sintering-resistant, a single Ru NP is successfully encapsulated, and its leaching-resistant property is enhanced based on the improved metal-support contact, thus affording a highly stable Ru catalyst. Moreover, such a synthetic concept can be extended to the stabilization of other supported catalysts, providing a general approach to enhancing both the thermal and chemical stability of supported nanocatalysts.
为了解决 Ru 基催化剂在合成过程中抗烧结和浸出以及在水相乙酰丙酸(LA)加氢制备 γ-戊内酯(GVL)过程中稳定性差的问题,我们提出了一种“内-外”合成策略,用于在单 Ru 纳米颗粒(4.2nm)内部制备稳定的蛋黄壳结构纳米球,该纳米颗粒被锚定在介孔壳(4.0nm 孔尺寸)内部,标记为 YS Ru@HMCS(蛋黄壳结构 Ru 封装在中空介孔碳球中)。这种壳支撑核结构结合了传统的蛋黄壳结构和负载型的优点,其中活性核不仅完全暴露,而且基于氧化 Ru NP 和 N 掺杂介孔碳壳之间的优化相互作用,还被强烈地锚定在壳上。因此,所得的 YS Ru@HMCS 在水相中进行 LA 加氢反应时,表现出高 LA 转化率(99.4%)、高 GVL 选择性(99.9%)和长循环寿命(高达 9 次),超过了传统的蛋黄壳结构和负载型类似物。由于烧结抗性,成功地封装了单个 Ru NP,并且由于改善了金属-载体接触,提高了其抗浸出性能,从而提供了一种高稳定性的 Ru 催化剂。此外,这种合成概念可以扩展到其他负载型催化剂的稳定化,为提高负载型纳米催化剂的热稳定性和化学稳定性提供了一种通用方法。