Goswami Somen, Singha Soumen, Saha Indrajit, Chatterjee Abhishikta, Dey Subrata K, Gómez García Carlos J, Frontera Antonio, Kumar Sanjay, Saha Rajat
Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India.
Department of Chemistry, RKMRC, Narendrapur-700103, WB, India.
Inorg Chem. 2020 Jun 15;59(12):8487-8497. doi: 10.1021/acs.inorgchem.0c00909. Epub 2020 May 28.
Metal-ligand coordination interactions are usually much stronger than weak intermolecular interactions. Nevertheless, here, we show experimental evidence and theoretical confirmation of a very rare example where metal-ligand bonds dissociate in an irreversible way, helped by a large number of weak intermolecular interactions that surpass the energy of the metal-ligand bond. Thus, we describe the design and synthesis of trinuclear MnFe complex {[Mn(L)(HO)]Fe(CN)}, starting from a mononuclear Mn(III)-Schiff base complex: [Mn(L)(HO)Cl] () and [Fe(CN)] anions. This reaction implies the dissociation of Mn(III)-Cl coordination bonds and the formation of Mn(III)-NC bonds with the help of several intermolecular interactions. Here, we present the synthesis, crystal structure, and magnetic characterization of the monomeric Mn(III) complex [Mn(L)(HO)Cl] () and of compound (HO)[Mn(L)(HO)]{[Mn(L)(HO)]Fe(CN)}4HO () (HL = 2,2'-((1,1')-(ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(4-methoxyphenol)). Complex is a monomer where the Schiff base ligand (L) is coordinated to the four equatorial positions of the Mn(III) center with a HO molecule and a Cl ion at the axial sites and the monomeric units are assembled by π-π and hydrogen-bonding interactions to build supramolecular dimers. The combination of [Fe(CN)] with complex leads to the formation of linear Mn-NC-Fe-CN-Mn trimers where two cyano groups of the [Fe(CN)] anion replace the labile chloride from the coordination sphere of two [Mn(L)(HO)Cl] complexes, giving rise to the linear anionic {[Mn(L)(HO)]Fe(CN)} trimer. This MnFe trimer crystallizes with an oxonium cation and a mononuclear [Mn(L)(HO)] cation, closely related to the precursor neutral complex [Mn(L)(HO)Cl]. In compound , the MnFe trimers are assembled by several hydrogen-bonding and π-π interactions to frame an extended structure similar to that of complex . Density functional theoretical (DFT) calculations at the PBE1PBE-D3/def2-TZVP level show that the bond dissociation energy (-29.3 kcal/mol) for the Mn(III)-Cl bond is smaller than the summation of all the weak intermolecular interactions (-30.1 kcal/mol). Variable-temperature magnetic studies imply the existence of weak intermolecular antiferromagnetic couplings in both compounds, which can be can cancelled with a critical field of ca. 2.0 and 2.5 T at 2 K for compounds and , respectively. The magnetic properties of compound have been fit with a simple = 2 monomer with = 1.959, a weak zero-field splitting (|| = 1.23 cm), and a very weak intermolecular interaction ( = -0.03 cm). For compound , we have used a model with an = 2 monomer with ZFS plus an = 2 antiferromagnetically coupled dimer with = 2.009, || = 1.21 cm, and = -0.42 cm. The metamagnetic behavior of both compounds is attributed to the weak intermolecular π-π and hydrogen-bonding interactions.
金属-配体配位相互作用通常比弱分子间相互作用强得多。然而,在此我们展示了一个非常罕见例子的实验证据和理论证实,即在大量弱分子间相互作用的帮助下,金属-配体键以不可逆方式解离,这些弱分子间相互作用的能量超过了金属-配体键的能量。因此,我们描述了三核MnFe配合物{[Mn(L)(H₂O)]Fe(CN)}的设计与合成,它是从单核Mn(III)-席夫碱配合物:[Mn(L)(H₂O)Cl] () 和 [Fe(CN)]⁴⁻ 阴离子开始合成的。该反应意味着Mn(III)-Cl配位键的解离以及在几种分子间相互作用的帮助下形成Mn(III)-NC键。在此,我们展示了单体Mn(III)配合物[Mn(L)(H₂O)Cl] () 和化合物(HO)[Mn(L)(H₂O)]{[Mn(L)(H₂O)]Fe(CN)}·4H₂O () (HL = 2,2'-((1,1')-(乙烷-1,2-二亚基双(氮烯基亚基))双(亚甲基))双(4-甲氧基苯酚))的合成、晶体结构和磁性表征。配合物 是一种单体,其中席夫碱配体(L)与Mn(III)中心的四个赤道位置配位,轴向位置有一个H₂O分子和一个Cl离子,并且单体单元通过π-π和氢键相互作用组装形成超分子二聚体。[Fe(CN)]⁴⁻ 与配合物 的结合导致形成线性Mn-NC-Fe-CN-Mn三聚体,其中[Fe(CN)]⁴⁻ 阴离子的两个氰基取代了两个[Mn(L)(H₂O)Cl]配合物配位球中的不稳定氯离子,形成线性阴离子{[Mn(L)(H₂O)]Fe(CN)}三聚体。这种MnFe三聚体与一个氧鎓阳离子和一个单核[Mn(L)(H₂O)]阳离子一起结晶,与前体中性配合物[Mn(L)(H₂O)Cl]密切相关。在化合物 中,MnFe三聚体通过几种氢键和π-π相互作用组装形成类似于配合物 的扩展结构。在PBE1PBE-D3/def2-TZVP水平的密度泛函理论(DFT)计算表明,Mn(III)-Cl键的键解离能(-29.3 kcal/mol)小于所有弱分子间相互作用的总和(-30.1 kcal/mol)。变温磁性研究表明两种化合物中都存在弱分子间反铁磁耦合,在2 K时,对于化合物 和 ,分别可以用约2.0和2.5 T的临界场消除这种耦合。化合物 的磁性性质已用一个简单的S = 2单体拟合,其中g = 1.959,零场分裂较弱(||D = 1.23 cm⁻¹),分子间相互作用非常弱(J = -0.03 cm⁻¹)。对于化合物 ,我们使用了一个模型,其中有一个S = 2单体加上零场分裂,以及一个S = 2反铁磁耦合二聚体,其中g = 2.009,||D = 1.21 cm⁻¹,J = -0.42 cm⁻¹。两种化合物的变磁性行为归因于弱分子间π-π和氢键相互作用。