Thakur Mukesh Kumar, Fang Chih-Yi, Yang Yung-Ta, Effendi Tirta Amerta, Roy Pradip Kumar, Chen Ruei-San, Ostrikov Kostya Ken, Chiang Wei-Hung, Chattopadhyay Surojit
Institute of Biophotonics, National Yang Ming University, 155, Sec-2, Li Nong Street, Taipei 112, Taiwan.
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Sec. 4, Da'an District, Taipei 10607, Taiwan.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28550-28560. doi: 10.1021/acsami.0c06753. Epub 2020 Jun 10.
Plasmonic nanostructure/semiconductor nanohybrids offer many opportunities for emerging electronic and optoelectronic device applications because of their unique geometries in the nanometer scale and material properties. However, the development of a simple and scalable synthesis of plasmonic nanostructure/semiconductor nanohybrids is still lacking. Here, we report a direct synthesis of colloidal gold nanoparticle/graphene quantum dot (Au@GQD) nanohybrids under ambient conditions using microplasmas and their application as photoabsorbers for broad band photodetectors (PDs). Due to the unique AuNP core and graphene shell nanostructures in the synthesized Au@GQD nanohybrids, the plasmonic absorption of the AuNP core extends the usable spectral range of the photodetectors. It is demonstrated that the Au@GQD-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of ∼10 A/W, ultrahigh detectivity of 10 Jones, and fast response time in the millisecond scale (65 ms rise time and 53 ms fall time). We suggest that the synergistic effect can be attributed to the strong fluorescence quenching in Au@GQD coupled with the two-dimensional graphene layer in the device. This work provides knowledge of tailoring the optical absorption in GQDs with plasmonic AuNPs and the corresponding photophysics for broad band response in PD-related devices.
等离子体纳米结构/半导体纳米杂化物因其纳米尺度的独特几何形状和材料特性,为新兴的电子和光电器件应用提供了诸多机遇。然而,目前仍缺乏一种简单且可扩展的合成等离子体纳米结构/半导体纳米杂化物的方法。在此,我们报道了在环境条件下利用微等离子体直接合成胶体金纳米颗粒/石墨烯量子点(Au@GQD)纳米杂化物,并将其用作宽带光电探测器(PD)的光吸收体。由于合成的Au@GQD纳米杂化物中独特的金纳米颗粒核心和石墨烯壳层纳米结构,金纳米颗粒核心的等离子体吸收扩展了光电探测器的可用光谱范围。结果表明,基于Au@GQD的可见光光电探测器同时具有约10 A/W的非凡光响应度、10 Jones的超高探测率以及毫秒级的快速响应时间(上升时间65 ms,下降时间53 ms)。我们认为,这种协同效应可归因于Au@GQD中强烈的荧光猝灭以及器件中的二维石墨烯层。这项工作为利用等离子体金纳米颗粒调整石墨烯量子点中的光吸收以及在与光电探测器相关的器件中实现宽带响应的相应光物理过程提供了知识。