Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom.
School of Mathematics, The University of Manchester, Manchester, M13 9PL, United Kingdom.
Sci Rep. 2020 May 29;10(1):8786. doi: 10.1038/s41598-020-64618-9.
The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in the limit of large, but finite, populations using Kramers-Moyal expansion techniques. We demonstrate these results by application to a stochastic birth-death model for a population of cells in order to develop several approximations to the normal tissue complication probability (NTCP): a problem arising in the radiation treatment of cancers. We specifically allow for interaction between cells, via a nonlinear logistic growth model, and our approximations capture the effects of intrinsic noise on NTCP. We consider examples of NTCP in both a simple model of normal cells and in a model of normal and damaged cells. Our analytical approximation of NTCP could help optimise radiotherapy planning, for example by estimating the probability of complication-free tumour under different treatment protocols.
随机过程首次穿过边界的时间对于许多不同的应用非常重要。然而,我们很少能够计算这些首次通过时间的解析分布。我们使用 Kramers-Moyal 展开技术,在大但有限的种群极限下,为一般首次通过时间问题的第一和第二矩开发了一种近似。我们通过将其应用于细胞群体的随机生死模型来证明这些结果,以开发正常组织并发症概率(NTCP)的几个近似值:这是癌症放射治疗中出现的一个问题。我们特别允许细胞之间通过非线性逻辑斯谛增长模型进行相互作用,并且我们的近似值捕捉到了内在噪声对 NTCP 的影响。我们考虑了正常细胞的简单模型和正常细胞和受损细胞的模型中的 NTCP 示例。我们对 NTCP 的解析近似可以帮助优化放射治疗计划,例如通过估计不同治疗方案下无并发症肿瘤的概率。