Wong C H, Lortz R, Zatsepin A F
Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia.
Phys Chem Chem Phys. 2020 Jun 21;22(23):12996-13001. doi: 10.1039/d0cp02274h. Epub 2020 Jun 1.
This paper presents a path to tailor adapted magnetic and electronic properties in carbyne. Although p-orbital magnetism is generally much weaker than d-orbital magnetism, we demonstrate that the charge fluctuation of the free radical electrons triggered by a time-varying electric dipole moment leads to enormous p-orbital magnetism. By introducing 25% arsenic and 12.5% fluorine into the monoatomic carbon chain, the magnetic moment of the arsenic atom reaches 2.9 μ, which is ∼1.3 times stronger than magnetic moment of bulk Fe. This magnetically optimized carbyne composite carries an exchange-correlation energy of 22 meV (∼270 K). On the other hand, we convert the carbyne (in beta-form) from metallic to a semiconducting state by using anionic dopants. After doping 12.5% nitrogen and 12.5% oxygen into the beta-carbyne, the semiconducting gap of this composite is optimized at 1.6 eV, which is 1.4 times larger than the band gap of bulk silicon.
本文提出了一种调整卡宾中磁性能和电子性能的方法。虽然p轨道磁性通常比d轨道磁性弱得多,但我们证明了由随时间变化的电偶极矩引发的自由基电子的电荷涨落会导致巨大的p轨道磁性。通过向单原子碳链中引入25%的砷和12.5%的氟,砷原子的磁矩达到2.9 μ,比块状铁的磁矩强约1.3倍。这种经过磁优化的卡宾复合材料携带22 meV(约270 K)的交换关联能。另一方面,我们通过使用阴离子掺杂剂将卡宾(β型)从金属态转变为半导体态。在向β - 卡宾中掺杂12.5%的氮和12.5%的氧后,这种复合材料的半导体带隙优化为1.6 eV,比块状硅的带隙大1.4倍。