Ouedraogo Seydou, Meunier-Prest Rita, Kumar Abhishek, Bayo-Bangoura Mabinty, Bouvet Marcel
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078 Dijon Cedex, France.
Laboratoire de Chimie Moléculaire et de Matériaux, Université Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021, Ouagadougou, Burkina Faso.
ACS Sens. 2020 Jun 26;5(6):1849-1857. doi: 10.1021/acssensors.0c00877. Epub 2020 Jun 10.
Although ambipolar materials are highly studied in organic electronics, they are rarely used in gas sensors. In the present work, we studied ammonia sensing on organic heterojunctions in a bilayer configuration composed of octachlorinated metallophthalocyanines (M(ClPc); M: Co, Cu, and Zn) as a sublayer and lutetium bis-phthalocyanine (LuPc) as a top layer. Despite the small effect of metal atom in M(ClPc) on the device current and the interfacial energy barrier, a strong effect on the NH sensing behavior was found such that Co(ClPc)-, Cu(ClPc)-, and Zn(ClPc)-based devices exhibited -type, -type, and ambipolar charge carrier transport, respectively. Variable carrier transport has been explained by charges hopping at the interface and subsequent heterojunction formation. In particular, the ambipolar transport regime in Zn(ClPc)-based devices is triggered by the chemical doping from NH and water when the device is exposed longer under NH at high humidity turning it -type. Gas sensing studies performed in a wide concentration range of NH at a variable relative humidity (rh) exhibited very high sensitivity of these devices. The best performance is obtained with Co(ClPc)-based devices demonstrated by a very high relative response (13% at 10 ppm NH) and sensitivity (1.47%.ppm), sub-ppm limit of detection (250 ppb), and negligible interference from rh. Such superior sensing characteristics based on a new heterojunction device make it an ideal NH sensor for real application.
尽管双极性材料在有机电子学中得到了广泛研究,但它们在气体传感器中的应用却很少。在本工作中,我们研究了由八氯金属酞菁(M(ClPc);M:Co、Cu和Zn)作为底层和双酞菁镥(LuPc)作为顶层组成的双层结构有机异质结上的氨传感。尽管M(ClPc)中的金属原子对器件电流和界面能垒的影响较小,但对NH传感行为有显著影响,基于Co(ClPc)、Cu(ClPc)和Zn(ClPc)的器件分别表现出n型、p型和双极性电荷载流子传输。可变载流子传输已通过界面处的电荷跳跃和随后的异质结形成得到解释。特别是,基于Zn(ClPc)的器件中的双极性传输机制是由NH和水的化学掺杂触发的,当器件在高湿度下长时间暴露于NH中时,它会转变为p型。在可变相对湿度(rh)下对宽浓度范围的NH进行的气敏研究表明,这些器件具有非常高的灵敏度。基于Co(ClPc)的器件表现出最佳性能,具有非常高的相对响应(在10 ppm NH时为13%)和灵敏度(1.47%.ppm)、亚ppm检测限(250 ppb)以及来自rh的可忽略不计的干扰。基于新型异质结器件的这种优异传感特性使其成为实际应用中理想的NH传感器。