Suppr超能文献

基于多数据库的生物信息学分析鉴定出与肝细胞癌相关的枢纽基因。

Bioinformatics Analysis based on Multiple Databases Identifies Hub Genes Associated with Hepatocellular Carcinoma.

作者信息

Zeng Lu, Fan Xiude, Wang Xiaoyun, Deng Huan, Zhang Kun, Zhang Xiaoge, He Shan, Li Na, Han Qunying, Liu Zhengwen

机构信息

Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, P.R. China.

Xi'an Medical University, Xi'an 710021, Shaanxi Province, P.R. China.

出版信息

Curr Genomics. 2019 Aug;20(5):349-361. doi: 10.2174/1389202920666191011092410.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is the most common liver cancer and the mechanisms of hepatocarcinogenesis remain elusive.

OBJECTIVE

This study aims to mine hub genes associated with HCC using multiple databases.

METHODS

Data sets GSE45267, GSE60502, GSE74656 were downloaded from GEO database. Differentially expressed genes (DEGs) between HCC and control in each set were identified by limma software. The GO term and KEGG pathway enrichment of the DEGs aggregated in the datasets (aggregated DEGs) were analyzed using DAVID and KOBAS 3.0 databases. Protein-protein interaction (PPI) network of the aggregated DEGs was constructed using STRING database. GSEA software was used to verify the biological process. Association between hub genes and HCC prognosis was analyzed using patients' information from TCGA database by survminer R package.

RESULTS

From GSE45267, GSE60502 and GSE74656, 7583, 2349, and 553 DEGs were identified respectively. A total of 221 aggregated DEGs, which were mainly enriched in 109 GO terms and 29 KEGG pathways, were identified. Cell cycle phase, mitotic cell cycle, cell division, nuclear division and mitosis were the most significant GO terms. Metabolic pathways, cell cycle, chemical carcinogenesis, retinol metabolism and fatty acid degradation were the main KEGG pathways. Nine hub genes ( and ) were selected by PPI network and all of them were associated with prognosis of HCC patients.

CONCLUSION

and were hub genes in HCC, which may be potential biomarkers of HCC and targets of HCC therapy.

摘要

背景

肝细胞癌(HCC)是最常见的肝癌,其致癌机制仍不清楚。

目的

本研究旨在使用多个数据库挖掘与HCC相关的核心基因。

方法

从GEO数据库下载数据集GSE45267、GSE60502、GSE74656。使用limma软件识别每组中HCC与对照之间的差异表达基因(DEG)。使用DAVID和KEGG 3.0数据库分析数据集中聚集的DEG的GO术语和KEGG通路富集情况。使用STRING数据库构建聚集的DEG的蛋白质-蛋白质相互作用(PPI)网络。使用GSEA软件验证生物学过程。使用survminer R包通过TCGA数据库中的患者信息分析核心基因与HCC预后之间的关联。

结果

分别从GSE45267、GSE60502和GSE74656中鉴定出7583、2349和553个DEG。共鉴定出221个聚集的DEG,主要富集在109个GO术语和29条KEGG通路中。细胞周期阶段、有丝分裂细胞周期、细胞分裂、核分裂和有丝分裂是最显著的GO术语。代谢途径、细胞周期、化学致癌作用、视黄醇代谢和脂肪酸降解是主要的KEGG通路。通过PPI网络选择了9个核心基因(和),它们均与HCC患者的预后相关。

结论

和是HCC中的核心基因,可能是HCC的潜在生物标志物和HCC治疗的靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验