Suppr超能文献

生物材料在缺血性脑卒中中的神经修复方法。

Neurorestoration Approach by Biomaterials in Ischemic Stroke.

作者信息

Esteban-Garcia Noelia, Nombela Cristina, Garrosa Javier, Rascón-Ramirez Fernando J, Barcia Juan Antonio, Sánchez-Sánchez-Rojas Leyre

机构信息

Regenerative Medicine and Advanced Therapies Lab, Instituto de Investigación Sanitaria San Carlos, Clínico San Carlos Hospital, Madrid, Spain.

Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain.

出版信息

Front Neurosci. 2020 May 12;14:431. doi: 10.3389/fnins.2020.00431. eCollection 2020.

Abstract

Ischemic stroke (IS) is the leading cause of disability in the western world, assuming a high socio-economic cost. One of the most used strategies in the last decade has been biomaterials, which have been initially used with a structural support function. They have been perfected, different compounds have been combined, and they have been used together with cell therapy or controlled release chemical compounds. This double function has driven them as potential candidates for the chronic treatment of IS. In fact, the most developed are in different phases of clinical trial. In this review, we will show the ischemic scenario and address the most important criteria to achieve a successful neuroreparation from the point of view of biomaterials. The spontaneous processes that are activated and how to enhance them is one of the keys that contribute to the success of the therapeutic approach. In addition, the different routes of administration and how they affect the design of biomaterials are analyzed. Future perspectives show where this broad scientific field is heading, which advances every day with the help of technology and advanced therapies.

摘要

缺血性中风(IS)是西方世界导致残疾的主要原因,造成高昂的社会经济成本。在过去十年中,最常用的策略之一是生物材料,其最初用于提供结构支撑功能。它们不断完善,多种不同化合物被组合使用,还与细胞疗法或控释化合物一同应用。这种双重功能使其成为IS慢性治疗的潜在候选物。事实上,最先进的生物材料正处于不同阶段的临床试验中。在本综述中,我们将阐述缺血情况,并从生物材料的角度探讨实现成功神经修复的最重要标准。激活的自发过程以及如何增强这些过程是促成治疗方法成功的关键之一。此外,还分析了不同的给药途径及其对生物材料设计的影响。未来展望展示了这一广阔科学领域的发展方向,借助技术和先进疗法,该领域每天都在进步。

相似文献

1
Neurorestoration Approach by Biomaterials in Ischemic Stroke.
Front Neurosci. 2020 May 12;14:431. doi: 10.3389/fnins.2020.00431. eCollection 2020.
2
Injectable biomaterial shuttles for cell therapy in stroke.
Brain Res Bull. 2021 Nov;176:25-42. doi: 10.1016/j.brainresbull.2021.08.002. Epub 2021 Aug 12.
3
Perspective insights into hydrogels and nanomaterials for ischemic stroke.
Front Cell Neurosci. 2023 Jan 24;16:1058753. doi: 10.3389/fncel.2022.1058753. eCollection 2022.
4
Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs.
Biomed Pharmacother. 2022 Apr;148:112719. doi: 10.1016/j.biopha.2022.112719. Epub 2022 Feb 12.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.
9
Neurorestorative Approaches for Ischemic StrokeChallenges, Opportunities, and Recent Advances.
Neuroscience. 2024 Jul 9;550:69-78. doi: 10.1016/j.neuroscience.2024.05.009. Epub 2024 May 17.
10
How smart do biomaterials need to be? A translational science and clinical point of view.
Adv Drug Deliv Rev. 2013 Apr;65(4):581-603. doi: 10.1016/j.addr.2012.07.009. Epub 2012 Jul 20.

引用本文的文献

3
Non-human primate models of focal cortical ischemia for neuronal replacement therapy.
J Cereb Blood Flow Metab. 2023 Sep;43(9):1456-1474. doi: 10.1177/0271678X231179544. Epub 2023 May 31.
4
Biomimetic nanoparticles in ischemic stroke therapy.
Discov Nano. 2023 Mar 11;18(1):40. doi: 10.1186/s11671-023-03824-6. eCollection 2023 Dec.
5
Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke.
Biomolecules. 2021 Sep 6;11(9):1316. doi: 10.3390/biom11091316.
7
The Role of Stem Cells in the Therapy of Stroke.
Curr Neuropharmacol. 2022 Mar 4;20(3):630-647. doi: 10.2174/1570159X19666210806163352.
8
Are We Ready for Cell Therapy to Treat Stroke?
Front Cell Dev Biol. 2021 Jun 23;9:621645. doi: 10.3389/fcell.2021.621645. eCollection 2021.
9
Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19.
Emergent Mater. 2021;4(1):293-312. doi: 10.1007/s42247-021-00192-8. Epub 2021 Mar 10.

本文引用的文献

1
Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications.
Biomater Sci. 2020 Mar 17;8(6):1536-1574. doi: 10.1039/c9bm01337g.
2
Recovery of sensory function after the implantation of oriented-collagen tube into the resected rat sciatic nerve.
Regen Ther. 2020 Jan 14;14:48-58. doi: 10.1016/j.reth.2019.12.004. eCollection 2020 Jun.
4
The protective effect of polyethylene glycol-conjugated urokinase nanogels in rat models of ischemic stroke when administrated outside the usual time window.
Biochem Biophys Res Commun. 2020 Mar 19;523(4):887-893. doi: 10.1016/j.bbrc.2020.01.032. Epub 2020 Jan 16.
5
Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and Generation of Nitric Oxide in Early Ischemic Stroke.
ACS Nano. 2020 Feb 25;14(2):2024-2035. doi: 10.1021/acsnano.9b08587. Epub 2020 Jan 17.
7
Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier.
Expert Opin Drug Deliv. 2020 Jan;17(1):23-32. doi: 10.1080/17425247.2020.1698544. Epub 2019 Dec 3.
8
Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering.
Neural Regen Res. 2020 May;15(5):783-789. doi: 10.4103/1673-5374.268891.
10
Clinical neurophysiology of stroke.
Handb Clin Neurol. 2019;161:109-119. doi: 10.1016/B978-0-444-64142-7.00044-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验